Skip to main content
Log in

Averting cracks caused by insertion reaction in lithium–ion batteries

  • Materials Communications
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In a lithium-ion battery, both electrodes are atomic frameworks that host mobile lithium ions. When the battery is being charged or discharged, lithium ions diffuse from one electrode to the other. Such an insertion reaction deforms the electrodes and may cause the electrodes to crack. This paper uses fracture mechanics to determine the critical conditions to avert insertion-induced cracking. The method is applied to cracks induced by the mismatch between phases in LiFePO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. G.A. Nazri, G. Pistoia Lithium Batteries: Science and Technology (Kluwer Academic Publishers, Boston, MA 2003)

    Book  Google Scholar 

  2. Basic Research Needs to Assure a Secure Energy Future (S. Department of Energy, Washington, DC 2003)

  3. Basic Research Needs for Electrical Energy Storage (U.S. Department of Energy, Washington, DC 2007)

  4. M. Broussely, G. Pistoia Industrial Applications of Batteries (Elsevier, Amsterdam 2007)

    Google Scholar 

  5. P.G. Bruce Solid State Electrochemistry (Cambridge University Press 1995)

    Google Scholar 

  6. R.A. Huggins Advanced Batteries (Springer, New York, NY 2009)

    Google Scholar 

  7. J. Go, I. Pyun Investigation of stresses generated during lithium transport through the RF sputter-deposited Li1-dCoO2 film by DQCR technique. J. Electrochem. Soc. 150, A1037 (2003)

    Article  CAS  Google Scholar 

  8. Y. Itou, Y. Ukyo Performance of LiNiCoO2 materials for advanced lithium-ion batteries. J. Power Sources 146, 39 (2005)

    Article  CAS  Google Scholar 

  9. D. Wang, X. Wu, Z. Wang, L. Chen Cracking causing cyclic instability of LiFePO4 cathode material. J. Power Sources 140, 125 (2005)

    Article  CAS  Google Scholar 

  10. K.E. Aifantis, S.A. Hackney An ideal elasticity problem for Li-batteries. J. Mech. Behav. Mater. 14, 413 (2003)

    Article  CAS  Google Scholar 

  11. K. Zaghib, J. Shim, A. Guerfi, P. Charest, K. Striebel Effect of carbon source as additives in LiFePO4 as positive electrode for lithium-ion batteries. Electrochem. Solid-State Lett. 8, A207 (2005)

    Article  CAS  Google Scholar 

  12. S.Y. Chung, J.T. Bloking, Y.M. Chiang Electronically conductive phosphor-olivines as lithium storage electrodes. Nat. Mater. 1, 123 (2002)

    Article  CAS  Google Scholar 

  13. S.P. Herle, B. Ellis, N. Coombs, L.F. Nazar Nano-network electronic conduction in iron and nickel olivine phosphates. Nat. Mater. 3, 147 (2004)

    Article  CAS  Google Scholar 

  14. F. Croce, A.D. Epifanio, J. Hassoun, A. Deptula, T. Olczac, B. Scrosati A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochem. Solid-State Lett. 5, A47 (2002)

    Article  CAS  Google Scholar 

  15. A. Yamada, S.C. Chung, K. Hinokuma Optimized LiFePO4 for lithium battery cathodes. J. Electrochem. Soc. 148, A224 (2001)

    Article  CAS  Google Scholar 

  16. C. Delacourt, P. Poizot, S. Levasseur, C. Masquelier Size effects on carbon-free LiFePO4 powders. Electrochem. Solid-State Lett. 9, A352 (2006)

    Article  CAS  Google Scholar 

  17. H. Gabrisch, J. Wilcox, M.M. Doeff TEM study of fracturing in spherical and plate-like LiFePO4 particles. Electrochem. Solid-State Lett. 11, A25 (2008)

    Article  CAS  Google Scholar 

  18. G. Chen, X. Song, T.J. Richardson Electron microscopy study of the LiFePO4 to FePO4 phase transition. Electrochem. Solid-State Lett. 9, A295 (2006)

    Article  CAS  Google Scholar 

  19. R.A. Huggins, W.D. Nix Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 6, 57 (2000)

    Article  CAS  Google Scholar 

  20. K.E. Aifantis, S.A. Hackney, J.P. Dempsey Design criteria for nanostructured Li-ion batteries. J. Power Sources 165, 874 (2007)

    Article  CAS  Google Scholar 

  21. X.C. Zhang, W. Shyy, A.M. Sastry Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J. Electrochem. Soc. 154, A910 (2007)

    Article  CAS  Google Scholar 

  22. J. Christensen, J. Newman Stress generation and fracture in lithium insertion materials. J. Electrochem. Soc. 153, A1019 (2005)

    Article  Google Scholar 

  23. A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188 (1997)

    Article  CAS  Google Scholar 

  24. B. Lawn Fracture of Brittle Solids (Cambridge University Press, New York, NY 1993)

    Book  Google Scholar 

  25. A.G. Evans Microfracture from thermal expansion anisotropy—I. Single phase systems. Acta Metall. 26, 1845 (1978)

    Article  CAS  Google Scholar 

  26. T.C. Lu, J. Yang, Z. Suo, A.G. Evans, R. Hecht, R. Mehrabian Matrix cracking in intermetallic composites caused by thermal expansion mismatch. Acta Metall. Mater. 39, 1883 (1991)

    Article  CAS  Google Scholar 

  27. J.W. Hutchinson, Z. Suo Mixed-mode cracking in layered materials. Adv. Appl. Mech. 29, 63 (1992)

    Article  Google Scholar 

  28. C. Ouyang, S. Shi, Z. Wang, X. Huang, L. Chen First-principles study of Li ion diffusion in LiFePO4. Phys. Rev. B 69, 104303 (2004)

    Article  Google Scholar 

  29. T. Maxisch, G. Ceder Elastic properties of olivine LixFePO4 from first principles. Phys. Rev. B 73, 174112 (2006)

    Article  Google Scholar 

  30. K. Hsu, S. Tsay, B. Hwang Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol-gel route. J. Mater. Chem. 14, 2690 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suo Zhigang.

Additional information

The purpose of this Materials Communications section is to provide accelerated publication of important new results in the fields regularly covered by Journal of Materials Research. Materials Communications cannot exceed four printed pages in length, including space allowed for title, figures, tables, references, and an abstract limited to about 100 words.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Y., Zhao, X. & Zhigang, S. Averting cracks caused by insertion reaction in lithium–ion batteries. Journal of Materials Research 25, 1007–1010 (2010). https://doi.org/10.1557/JMR.2010.0142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0142

Navigation