We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

In situ observations on deformation behavior and stretching-induced failure of fine pitch stretchable interconnect

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Electronic devices capable of performing in extreme mechanical conditions such as stretching, bending, or twisting will improve biomedical and wearable systems. The required capabilities cannot be achieved with conventional building geometries, because of structural rigidity and lack of mechanical stretchability. In this article, a zigzag-patterned structure representing a stretchable interconnect is presented as a promising type of building block. In situ experimental observations on the deformed interconnect are correlated with numerical analysis, providing an understanding of the deformation and failure mechanisms. The experimental results demonstrate that the zigzag-patterned interconnect enables stretchability up to 60% without rupture. This stretchability is accommodated by in-plane rotation of arms and out-of-plane deformation of crests. Numerical analysis shows that the dominating failure cause is interfacial in-plane shear stress. The plastic strain concentration at the arms close to the crests, obtained by numerical simulation, agrees well with the failure location observed in the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. V.J. Lumelsky, M.S. Shur, and S. Wagner: Sensitive skin. IEEE Sensors J. 1, 41 (2001).

    Article  CAS  Google Scholar 

  2. S. Wagner, E. Bonderover, W.B. Jordan, and J.C. Sturm: Electro-textiles: Concepts and challenges. Int. J. Hielt Speed Electron. Syst. 12, 1 (2002).

    Article  Google Scholar 

  3. H. Jiang, D.Y. Khang, J. Song, Y. Sun, Y. Huang, and J.A. Rogers: Finite deformation mechanics in buckled thin films on compliant supports. Proc. Nat. Acad. Sci. U.S.A. 104(40), 15607 (2007).

    Article  CAS  Google Scholar 

  4. H. Jiang, Y. Sun, J.A. Rogers, and Y. Huang: Mechanics of precisely controlled thin film buckling on elastomeric substrate. Appl. Phys. Lett. 90, 133119 (2007).

    Article  Google Scholar 

  5. H.C. Ko, M.P. Stoykovich, J. Song, V. Malyarchuk, W.M. Choi, C.J. Yu, J.B. Geddes, J. Xiao, S. Wang, Y. Huang, and J.A. Rogers: A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748 (2008).

    Article  CAS  Google Scholar 

  6. D.H. Kim, J.H. Ahn, W.M. Choi, H.S. Kim, T.H. Kim, J. Song, Y.Y. Huang, L. Zhuangjian, L. Chun, and J.A. Rogers: Stretch-able and foldable silicon integrated circuits. Science 320, 507 (2008).

    Article  CAS  Google Scholar 

  7. J.H. Ahn, H.S. Kim, E. Menard, K.J. Lee, Z. Zhu, D.H. Kim, R.G. Nuzzo, J.A. Rogers, I. Amlani, V. Kushner, S.G. Thomas, and T. Duenas: Bendable integrated circuits on plastic substrates by use of printed ribbons of single-crystalline silicon. Appl. Phys. Lett. 90, 213501 (2007).

    Article  Google Scholar 

  8. S.P. Lacour, S. Wagner, Z. Huang, and Z. Suo: Stretchable gold conductors on elastomeric substrates. Appl. Phys. Lett. 82(15), 2404 (2003).

    Article  CAS  Google Scholar 

  9. S. Wagner, S.P. Lacour, J. Jones, P.I. Hsu, J.C. Sturm, T. Li, and Z. Suo: Electronic skin: Architecture and components. Physica E 25, 326 (2004).

    Article  Google Scholar 

  10. T. Li, Z. Huang, Z. Suo, S.P. Lacour, and S. Wagner: Stretchabil-ity of thin metal films on elastomer substrates. Appl. Phys. Lett. 85(16), 3435 (2004).

    Article  CAS  Google Scholar 

  11. T. Li, Z. Suo, S.P. Lacour, and S. Wagner: Compliant thin film patterns of stiff materials as platforms for stretchable electronics. J. Mater. Res. 20(12), 3274 (2005).

    Article  CAS  Google Scholar 

  12. D.S. Gray, J. Tien, and C.S. Chen: High-conductive elastomeric electronics. Adv. Mater. 16(5), 393 (2004).

    Article  CAS  Google Scholar 

  13. D. Brosteaux, F. Axisa, M. Gonzalez, and J. Vanfleteren: Design and fabrication of elastic interconnections for stretchable electronic circuits. IEEE Electron Device Lett. 28(7), 552 (2007).

    Article  Google Scholar 

  14. M. Gonzalez, F. Axisa, Van der M. Bulcke, D. Brosteaux, B. Vandevelde, and J. Vanfleteren: Design of metal interconnects for stretchable electronic circuits. Microelectron. Reliab. 48, 825 (2008).

    Article  Google Scholar 

  15. Y.Y. Hsu, M. Gonzalez, F. Bossuyt, F. Axisa, J. Vanfleteren, and I. DeWolf: A novel interconnect design with high stretchability and fine pitch capability in applications of stretchable electronics. Mater. Res. Soc. Symp. Proc. (2009).

    Google Scholar 

  16. S.L. Chiu, J. Leu, and P.S. Ho: Fracture of metal-polymer line structures. I: Semiflexible polyimide. J. Appl. Phys. 76(9), 5136 (1994).

    Article  CAS  Google Scholar 

  17. MSC Marc User Manual.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung-Yu Hsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, YY., Gonzalez, M., Bossuyt, F. et al. In situ observations on deformation behavior and stretching-induced failure of fine pitch stretchable interconnect. Journal of Materials Research 24, 3573–3582 (2009). https://doi.org/10.1557/jmr.2009.0447

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0447

Navigation