Skip to main content
Log in

Reverse Monte Carlo structural model for a zirconium-based metallic glass incorporating fluctuation microscopy medium-range order data

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We used reverse Monte Carlo (RMC) modeling to simulate the atomic structure of a Zr-based bulk metallic glass (BMG), incorporating short-range structural data from the electron diffraction total reduced density function G(r) and medium-range structural data from fluctuation electron microscopy (FEM). Including the FEM data created within the model loosely ordered planar atomic arrangements covering regions ∼1 nm in diameter without degrading the agreement with G(r). RMC refinement against only G(r) produced no agreement with FEM. Improved simulations are needed to create fully realistic BMG structures, but these results show that including FEM in RMC further constrains the structure compared with G(r) data alone and that the FEM signal in real materials is likely to arise from pseudo-planar arrangements of atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Slipenyuk and J. Eckert: Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55 Cu30Al10Ni5 metallic glass. Scr. Mater. 50, 39 (2004).

    Article  CAS  Google Scholar 

  2. P.K. Cang Fan, T.W. Liaw, W. Wilson, W. Dmowski, H. Choo, C.T. Liu, J.W. Richardson, and Th. Proffen: Structural model for bulk amorphous alloys. Appl. Phys. Lett. 89, 111905 (2006).

    Article  CAS  Google Scholar 

  3. A.S. Argon: Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979).

    Article  CAS  Google Scholar 

  4. M.L. Falk and J.S. Langer: Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57, 7192 (1998).

    Article  CAS  Google Scholar 

  5. A.C. Schuh, T.C. Hufnagel, and U. Ramamurty: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).

    Article  CAS  Google Scholar 

  6. G. Adam and J.H. Gibbs: On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139 (1965).

    Article  CAS  Google Scholar 

  7. D. Kivelson, S.A. Kivelson, X.L. Zhao, Z. Nussinov, and G. Tarjus: A thermodynamic theory of supercooled liquids. Physica A 219, 27 (1995).

    Article  CAS  Google Scholar 

  8. H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Mai, and E. Ma: Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419 (2006).

    Article  CAS  Google Scholar 

  9. T. Schenk, D. Holland-Moritz, V. Simonet, R. Bellissent, and D.M. Herlach: Icosahedral short-range order in deeply undercooled metallic melts. Phys. Rev. Lett. 89, 075507 (2002).

    Article  CAS  Google Scholar 

  10. G.W. Lee, A.K. Gangopadhyay, K.F. Kelton, R.W. Hyers, T.J. Rathz, J.R. Rogers, and D.S. Robinson: Difference in icosahedral short-range order in early and late transition metal liquids. Phys. Rev. Lett. 93, 037802 (2004).

    Article  CAS  Google Scholar 

  11. D.B. Miracle: A structural model for metallic glasses. Nat. Mater. 3, 697 (2004).

    Article  CAS  Google Scholar 

  12. H.E. Fischer, A.C. Barnes, and P.S. Salmon: Neutron and x-ray diffraction studies of liquids and glasses. Rep. Prog. Phys. 69, 233 (2006).

    Article  CAS  Google Scholar 

  13. J. Hafner, T. Egami, S. Aur, and B.C. Giessen: The structure of calcium-aluminium glasses: X-ray diffraction and computer simulation studies. J. Phys. F: Met. Phys. 17, 1807 (1987).

    Article  CAS  Google Scholar 

  14. T. Takagi, T. Okubo, Y. Hirotsu, B.S. Murty, K. Hono, and D. Shindo: Local structure of amorphous Zr70Pd30 alloy studied by electron diffraction. Appl. Phys. Lett. 79, 485 (2001).

    Article  CAS  Google Scholar 

  15. H.W. Sheng, H.Z. Liu, Y.Q. Cheng, J. Wen, P.L. Lee, W.K. Luo, S.D. Shastri, and E. Ma: Polyamorphism in a metallic glass. Nat. Mater. 6, 192 (2007).

    Article  CAS  Google Scholar 

  16. P.M. Voyles and J.R. Abelson: Medium-range order in amorphous silicon measured by fluctuation electron microscopy. Sol. Energy Mater. Sol. Cells 78, 85 (2003).

    Article  CAS  Google Scholar 

  17. J.J. Rehr and R.C. Albers: Theoretical approaches to x-ray absorption fine structure. Rev. Mod. Phys. 72, 621 (2000).

    Article  CAS  Google Scholar 

  18. Y. Waseda: Anomalous X-Ray Scattering for Materials Characterization (Springer, Berlin, 2002).

    Book  Google Scholar 

  19. S.R. Elliot: Medium-range structural order in covalent amorphous solids. Nature 354, 445 (1991).

    Article  Google Scholar 

  20. P.H. Gaskell and D.J. Wallis: Medium-range order in silica, the canonical network glass. Phys. Rev. Lett. 76, 66 (1996).

    Article  CAS  Google Scholar 

  21. D. Ma, A.D. Stoica, and X-L. Wang: Power-law scaling and fractal nature of medium-range order in metallic glasses. Nat. Mater. 8, 30 (2009).

    Article  CAS  Google Scholar 

  22. B.S. Murty and K. Hono: Nanoquasicrystallization of Zr-based metallic glasses. Mater. Sci. Eng., A 312, 253 (2001).

    Article  Google Scholar 

  23. A. Hirata, Y. Hirotsu, T.G. Nieh, T. Ohkubo, and N. Tanaka: Direct imaging of local atomic ordering in a Pd–Ni–P bulk metallic glass using Cs-corrected transmission electron microscopy. Ultramicroscopy 107, 116 (2007).

    Article  CAS  Google Scholar 

  24. M.M.J. Treacy, J.M. Gibson, L. Fan, D.J. Paterson, and I. McNulty: Fluctuation microscopy: A probe of medium range order. Rep. Prog. Phys. 68, 2899 (2005).

    Article  CAS  Google Scholar 

  25. J.M. Gibson, M.M.J. Treacy, and P.M. Voyles: Atom pair persistence in disordered materials from fluctuation microscopy. Ultramicroscopy 83, 169 (2000).

    Article  CAS  Google Scholar 

  26. J. Hwang, H. Cao, and P.M. Voyles: Nanometer-scale structural relaxation in Zr-based bulk metallic glass. Mater. Res. Soc. Symp. Proc. 1048, Z05–04 (2008).

    Google Scholar 

  27. T.C. Hufnagel, C. Fan, R.T. Ott, J. Li, and S. Brennan: Controlling shear band behavior in metallic glasses through microstructural design. Intermetallics 10, 1163 (2002).

    Article  CAS  Google Scholar 

  28. D.J. Sordelet, R.T. Ott, M.Z. Li, S.Y. Wang, C.Z. Wang, M.F. Besser, A.C.Y. Liu, and M.J. Kramer: Structure of Zrx Pt100-x (73 ≤x ≤77) metallic glasses. Metall. Mater. Trans. A 39, 1908 (2008).

    Article  CAS  Google Scholar 

  29. J. Wen, Y.Q. Cheng, J.Q. Wang, and E. Ma: Distinguishing medium-range order in metallic glass using fluctuation electron microscopy: A theoretical study using atomic models. J. Appl. Phys. 105, 043519 (2009).

    Article  CAS  Google Scholar 

  30. W.G. Stratton, J. Hamann, J.H. Perepezko, X. Mao, S.V. Khare, and P.M. Voyles: Aluminum nanoscale order in amorphous Al92Sm8 measured by fluctuation electron microscopy. Appl. Phys. Lett. 86, 141910 (2005).

    Article  CAS  Google Scholar 

  31. P.M. Voyles, N. Zotov, S.M. Nakhmanson, D.A. Drabold, J.M. Gibson, M.M.J. Treacy, and P. Keblinski: Structure and physical properties of paracrystalline atomistic models of amorphous silicon. J. Appl. Phys. 90, 9 (2001).

    Article  CAS  Google Scholar 

  32. D.A. Keen and R.L. Mcgreevy: Structural modelling of glasses using reverse Monte Carlo simulation. Nature 344, 423 (1990).

    Article  CAS  Google Scholar 

  33. R.L. McGreevy: Reverse Monte Carlo modeling. J. Phys. Condens. Matter 13, R877 (2001).

    Article  CAS  Google Scholar 

  34. P. Biswas, R. Atta-Fynn, and D.A. Drabold: Reverse Monte Carlo modeling of amorphous silicon. Phys. Rev. B 69, 195207 (2004).

    Article  CAS  Google Scholar 

  35. P. Biswas, D.N. Tafen, R. Atta-Fynn, and D. Drabold: The inclusion of experimental information in first principles modelling of materials. J. Phys. Condens. Matter 16, S5173 (2004).

    Article  CAS  Google Scholar 

  36. D. Wang, H. Tan, and Y. Li: Multiple maxima of GFA in three adjacent eutectics in Zr–Cu–Al alloy system: A metallographic way to pinpoint the best glass forming alloys. Acta Mater. 53, 2969 (2005).

    Article  CAS  Google Scholar 

  37. H. Chen and J-M. Zuo: Structure and phase separation of Ag–Cu alloy thin films. Acta Mater. 55, 1617 (2007).

    Article  CAS  Google Scholar 

  38. E.J. Kirkland: Advanced Computing in Electron Microscopy (Plenum, NY, 1998).

    Book  Google Scholar 

  39. D.J.H. Cockayne and D.R. Mckenzie: Electron diffraction analysis of polycrystalline and amorphous thin films. Acta Crystallogr., Sect. A 44, 870 (1988).

    Article  Google Scholar 

  40. P.M. Voyles: Fluctuation Electron Microscopy of Medium-Range Order in Amorphous Silicon (Dissertation, University of Illinois at Urbana-Champaign, 2001).

    Google Scholar 

  41. J. Puthoff and D.S. Stone: Unpublished data.

  42. D.B. Miracle: The efficient cluster packing model: An atomic structural model for metallic glasses. Acta Mater. 54, 4317 (2006).

    Article  CAS  Google Scholar 

  43. L.E. Hall and D.R. Mckenzie: Coordination number determination in binary alloys using electron diffraction. Philos. Mag. A 80, 525 (2000).

    Article  CAS  Google Scholar 

  44. R.K. Dash, P.M. Voyles, J.M. Gibson, M.M.J. Treacy, and P. Keblinski: A quantitative measure of medium-range order in amorphous materials from transmission electron micrographs. J. Phys. Condens. Matter 15, S2425 (2003).

    Article  CAS  Google Scholar 

  45. P.M. Voyles and D.A. Muller: Fluctuation microscopy in the STEM. Ultramicroscopy 93, 147 (2002).

    Article  CAS  Google Scholar 

  46. W.G. Stratton and P.M. Voyles: Comparison of fluctuation electron microscopy theories and experimental methods. J. Phys. Condens. Matter 19, 455203 (2007).

    Article  CAS  Google Scholar 

  47. L.A. Freeman, A. Howie, A.B. Mistry, and P.H. Gaskell: The Structure of Non-Crystallized Materials (Taylor and Francis, London, UK, 1976).

    Google Scholar 

  48. W.G. Stratton and P.M. Voyles: A phenomenological model of fluctuation electron microscopy for a nanocrystal/amorphous composite. Ultramicroscopy 108, 727 (2008).

    Article  CAS  Google Scholar 

  49. L.A. Freeman, A. Howie, A.B. Mistry, and P.H. Gaskell: The Structure of Non-Crystallized Materials (Taylor and Francis, London, UK, 1976).

    Google Scholar 

  50. W.G. Stratton and P.M. Voyles: A phenomenological model of fluctuation electron microscopy for a nanocrystal/amorphous composite. Ultramicroscopy 108, 727 (2008).

    Article  CAS  Google Scholar 

  51. G. Opletal, T.C. Petersen, D.G. McCulloch, I.K. Snook, and I. Yarovsky: The structure of disordered carbon solids studies using a hybrid reverse Monte Carlo algorithm. J. Phys. Condens. Matter 17, 2605 (2005).

    Article  CAS  Google Scholar 

  52. G. Zhao, P.R. Buseck, A. Rougée, and M.M.J. Treacy: Mediumrange order in molecular materials: Fluctuation electron microscopy for detecting fullerenes in disordered carbons. Ultramicroscopy 109, 177 (2009).

    Article  CAS  Google Scholar 

  53. Y. Suzuki, J. Haimovich, and T. Egami: Bond-orientational anisotropy in metallic glasses observed by x-ray diffraction. Phys. Rev. B 35, 2162 (1987).

    Article  CAS  Google Scholar 

  54. M.I. Mendelev, D.J. Sordelet, and M.J. Kramer: Using atomistic computer simulations to analyze x-ray diffraction data from metallic glasses. J. Appl. Phys. 102, 043501 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwoo Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, J., Clausen, A.M., Cao, H. et al. Reverse Monte Carlo structural model for a zirconium-based metallic glass incorporating fluctuation microscopy medium-range order data. Journal of Materials Research 24, 3121–3129 (2009). https://doi.org/10.1557/jmr.2009.0386

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0386

Navigation