Skip to main content
Log in

In situ electrochemical nanoindentation of FeAl (100) single crystal: Hydrogen effect on dislocation nucleation

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The hydrogen effect on dislocation nucleation in FeAl single crystal with (100) surface orientation has been examined with the aid of a specifically designed nanoindentation setup for in situ electrochemical experiments. The effect of the electrochemical potential on the indent load–displacement curve, especially the unstable elastic-plastic transition (pop-in), was studied in detail. The observations showed a reduction in the pop-in load for both samples due to in situ hydrogen charging, which is reproducibly observed within sequential hydrogen charging and discharging. Clear evidence is provided that hydrogen atoms facilitate homogeneous dislocation nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.S. Stoloff and C.T. Liu: Environmental embrittlement of iron aluminides. Intermetallics 2, 75 (1994).

    Article  CAS  Google Scholar 

  2. J.W. Cohron, Y. Lin, R.H. Zee, and E.P. George: Room-temperature mechanical behavior of FeAl: Effects of stoichiometry, environment, and boron addition. Acta Mater. 46, 6245 (1998).

    Article  CAS  Google Scholar 

  3. I. Baker, D. Wu, S.O. Kruijver, and E.P. George: The effects of environment on the room-temperature mechanical behavior of single-slip oriented FeAl single crystals. Mater. Sci. Eng., A 329, 729 (2002).

    Article  Google Scholar 

  4. C.T. Liu, E.P. George, P.J. Maziasz, and J.H. Schneibel: Recent advances in B2 iron aluminide alloys: Deformation, fracture and alloy design. Mater. Sci. Eng., A 258, 84 (1998).

    Article  Google Scholar 

  5. M. Wittmann, D. Wu, I. Baker, E.P. George, and L. Heatherly: The role of edge and screw dislocations on hydrogen embrittlement of Fe–40Al. Mater. Sci. Eng., A 319, 352 (2001).

    Article  Google Scholar 

  6. C. Borchers, T. Michler, and A. Pundt: Effect of hydrogen on the mechanical properties of stainless steels. Adv. Eng. Mater. 10, 11 (2008).

    Article  CAS  Google Scholar 

  7. A. Pundt and R. Kirchheim: Hydrogen in metals: Microstructural aspects. Annu. Rev. Mater. Res. 36, 555 (2006).

    Article  CAS  Google Scholar 

  8. V. Olden, C. Thaulow, R. Johnsen, E. Ostby, and T. Berstad: Application of hydrogen influenced cohesive laws in the prediction of hydrogen induced stress cracking in 25%Cr duplex stainless steel. Eng. Fract. Mech. 75, 2333 (2008).

    Article  Google Scholar 

  9. J.P. Chateau, D. Delafosse, and T. Magnin: Numerical simulations of hydrogen-dislocation interactions in fcc stainless steels. Part 1: Hydrogen-dislocation interactions in bulk crystals. Acta Mater. 50, 1507 (2002).

    Article  CAS  Google Scholar 

  10. H. Vehoff and H.K. Klameth: Hydrogen embrittlement and trapping at crack tips in Ni-single crystals. Acta Metall. 33, 955 (1985).

    Article  CAS  Google Scholar 

  11. H. Vehoff, C. Laird, and D.J. Duquette: The effects of hydrogen and segregation on fatigue crack nucleation at defined grain-boundaries in nickel bicrystals. Acta Metall. 35, 2877 (1987).

    Article  CAS  Google Scholar 

  12. R. Kirchheim: Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I.I. Experimental evidence and consequences. Acta Mater. 55, 5139 (2007).

    Article  CAS  Google Scholar 

  13. R. Kirchheim: Interaction of hydrogen with dislocations in palladium. 2. Interpretation of activity results by a Fermi-Dirac distribution. Acta Metall. 29, 845 (1981).

    Article  CAS  Google Scholar 

  14. P.J. Ferreira, I.M. Robertson, and H.K. Birnbaum: Hydrogen effects on the interaction between dislocations. Acta Mater. 46, 1749 (1998).

    Article  CAS  Google Scholar 

  15. G.M. Bond, I.M. Robertson, and H.K. Birnbaum: On the determination of the hydrogen fugacity in an environmental cell TEM facility. Scr. Metall. 20, 653 (1986).

    Article  CAS  Google Scholar 

  16. I.M. Robertson and D. Teter: Controlled environment transmission electron microscopy. Microsc. Res. Tech. 42, 260 (1998).

    Article  CAS  Google Scholar 

  17. Y. Katz, N. Tymiak, and W.W. Gerberich: Nanomechanical probes as new approaches to hydrogen/deformation interaction studies. Eng. Fract. Mech. 68, 619 (2001).

    Article  Google Scholar 

  18. M. Henning and H. Vehoff: Local mechanical behavior and slip band formation within grains of thin sheets. Acta Mater. 53, 1285 (2005).

    Article  CAS  Google Scholar 

  19. M.T. Welsch, M. Henning, M. Marx, and H. Vehoff: Measuring the plastic zone size by orientation gradient mapping (OGM) and electron channeling contrast imaging (ECCI). Adv. Eng. Mater. 9, 31 (2007).

    Article  Google Scholar 

  20. B. Yang and H. Vehoff: Dependence of nanohardness upon indentation size and grain size—A local examination of the interaction between dislocations and grain boundaries. Acta Mater. 55, 849 (2007).

    Article  CAS  Google Scholar 

  21. K. Durst, O. Franke, A. Bohner, and M. Goken: Indentation size effect in Ni–Fe solid solutions. Acta Mater. 55, 6825 (2007).

    Article  CAS  Google Scholar 

  22. A. Barnoush and H. Vehoff: In situ electrochemical nanoindenta-tion of a nickel (111) single crystal: Hydrogen effect on pop-in behaviour. Int. J. Mater. Res. 97, 1224 (2006).

    Article  CAS  Google Scholar 

  23. K.A. Nibur, D.F. Bahr, and B.P. Somerday: Hydrogen effects on dislocation activity in austenitic stainless steel. Acta Mater. 54, 2677 (2006).

    Article  CAS  Google Scholar 

  24. K. Durst, B. Backes, O. Franke, and M. Goken: Indentation size effect in metallic materials: Modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Mater. 54, 2547 (2006).

    Article  CAS  Google Scholar 

  25. C. Borchers, U. Laudahn, A. Pundt, S. Fahler, H.U. Krebs, and R Kirchheim: Influence of hydrogen loading on the microstructure of niobium-palladium multilayers. Philos. Mag. A 80, 543 (2000).

    Article  CAS  Google Scholar 

  26. J. Cizek, T. Prochazka, S. Danis, M. Cieslar, G. Brauer, W. Anwand, R. Kirchheim, and A. Pundt: Hydrogen-induced defects in niobium. J. Alloys Compd. 446, 479 (2007).

    Article  CAS  Google Scholar 

  27. A. Pundt, K. Northemann, and S. Schmidt: Hydrogen-related surface modifications of 20 nm thin straight-sided niobium nano-wires and niobium meander-films. J. Alloys Compd. 446, 549 (2007).

    Article  CAS  Google Scholar 

  28. A. Barnoush and H. Vehoff: Electrochemical nanoindentation: A new approach to probe hydrogen/deformation interaction. Scr. Mater. 55, 195 (2006).

    Article  CAS  Google Scholar 

  29. A. Barnoush and H. Vehoff: In situ electrochemical nanoindentation: A technique for local examination of hydrogen embrittlement. Corros. Sci. 50, 259 (2008).

    Article  CAS  Google Scholar 

  30. A. Barnoush and H. Vehoff: Hydrogen embrittlement of aluminum in aqueous environments examined by in situ electrochemical nanoindentation. Scr. Mater. 58, 747 (2008).

    Article  CAS  Google Scholar 

  31. S. Frangini, R. Giorgi, J. Lascovich, and A. Mignone: XPS study of passive films formed on an iron-aluminum intermetallic compound in acid-solution. Surf. Interface Anal. 21, 435 (1994).

    Article  CAS  Google Scholar 

  32. W.W. Gerberich, S.K. Venkataraman, H. Huang, S.E. Harvey, and D.L. Kohlstedt: The injection of plasticity by millinewton contacts. Acta Metall Mater. 43, 1569 (1995).

    Article  CAS  Google Scholar 

  33. Y.L. Chiu and A.H.W. Ngan: Time-dependent characteristics of incipient plasticity in nanoindentation of a Ni3Al single crystal. Acta Mater. 50, 1599 (2002).

    Article  CAS  Google Scholar 

  34. C.A. Schuh and A.C. Lund: Application of nucleation theory to the rate dependence of incipient plasticity during nanoindentation. J. Mater. Res. 19, 2152 (2004).

    Article  CAS  Google Scholar 

  35. H. Bei, E.P. George, J.L. Hay, and G.M. Pharr: Influence of indenter tip geometry on elastic deformation during nanoindentation. Phys. Rev. Lett. 95, 1 (2005).

    Article  CAS  Google Scholar 

  36. E.T. Lilleodden, J.A. Zimmerman, S.M. Foiles, and W.D. Nix: Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation. J. Mech. Phys. Solids 51, 901 (2003).

    Article  CAS  Google Scholar 

  37. A.M. Minor, E.T. Lilleodden, E.A. Stach, and J.W. Morris: Direct observations of incipient plasticity during nanoindentation of Al. J. Mater. Res. 19, 176 (2004).

    Article  CAS  Google Scholar 

  38. M.R. Harmouche and A Wolfenden: Temperature and composition dependence of Young modulus for ordered-B2 polycrystalline-CoAl and polycrystalline-FeAl. Mater. Sci. Eng. 84, 35 (1986).

    Article  CAS  Google Scholar 

  39. C. Vailhe and D. Farkas: Shear faults and dislocation core structure simulations in B2 FeAl. Acta Mater. 45, 4463 (1997).

    Article  CAS  Google Scholar 

  40. J.P. Hirth and J. Lothe: Theory of Dislocations (McGraw-Hill Book Co., New York, 1968).

    Google Scholar 

  41. C. Kittel: Introduction to Solid State Physics, 4th ed. (John Wiley, New York, 1971).

    Google Scholar 

  42. F. Guinea, J.H. Rose, J.R. Smith, and J. Ferrante: Scaling relations in the equation of state, thermal-expansion, and melting of metals. Appl. Phys. Lett. 44, 53 (1984).

    Article  CAS  Google Scholar 

  43. J.H. Rose, J.R. Smith, F. Guinea, and J. Ferrante: Universal features of the equation of state of metals. Phys. Rev. B 29, 2963 (1984).

    Article  CAS  Google Scholar 

  44. A. Barnoush: Hydrogen embrittlement, revisited by in situ electrochemical nanoindentation. Ph.D. Thesis, Saarland University, Saarbrücken, Germany, 2008, p. 257.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afrooz Barnoush.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnoush, A., Bies, C. & Vehoff, H. In situ electrochemical nanoindentation of FeAl (100) single crystal: Hydrogen effect on dislocation nucleation. Journal of Materials Research 24, 1105–1113 (2009). https://doi.org/10.1557/jmr.2009.0084

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0084

Navigation