Skip to main content

Advertisement

Log in

Elephant ivory: A low thermal conductivity, high strength nanocomposite

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

There has been much recent interest in heat transport in nanostructures, and alsoin the structure, properties, and growth of biological materials. Here we present measurements of thermal properties of a nanostructured biomineral, ivory. The room-temperature thermal conductivity of ivory is anomalously low in comparison with its constituent components. Low-temperature (2300 K) measurements ofthermal conductivity and heat capacity reveal a glass-like temperature dependenceof the thermal conductivity and phonon mean free path, consistent with increased phonon-boundary scattering associated with nanostructure. These results suggest that biomineral-like nanocomposite structures could be useful in the design of novel high-strength materials for low thermal conductivity applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Chen: Phonon heat conduction in nanostructures. Int. J. Therm. Sci. 39, 471 (2000).

    Article  CAS  Google Scholar 

  2. D.G. Cahill, W.K. Ford, K.E. Goodson, A. Majumdar, H.J. Maris, R. Merlin and S.R. Phillpot: Nanoscale thermal transport. J. Appl. Phys. 93, 790 (2002).

    Google Scholar 

  3. A.A. Balandin In Encyclopedia of Nanoscience and Nanotechnology, Vol. 10, edited by H.S. Nalwa (American Scientific Publishers, Stevenson Ranch, CA, 2004), pp. 425–445.

  4. X.W. Su and F.Z. Cui: Hierarchical structure of ivory: From nanometer to centimeter. Mater. Sci. Eng. C 7, 19 (1999).

    Article  Google Scholar 

  5. F.Z. Cui, H.B. Wen, H.B. Zhang, C.L. Ma and H.D. Li: Nanophase hydroxyapatite-like crystallites in natural ivory. J. Mater. Sci. Lett. 13, 1042 (1994).

    Article  CAS  Google Scholar 

  6. A.H. Heuer, D.J. Fink, V.J. Laraia, J.L. Arias, P.D. Calvert, K. Kendall, G.L. Messing, J. Blackwell, P.C. Rieke, D.H. Thompson, A.P. Wheeler, A. Vies and A.I. Caplan: Innovative materials processing strategies: A biomimetic approach. Science 255, 1098 (1992).

    Article  CAS  Google Scholar 

  7. G. Jeronimidis and A.G. Atkins: Mechanics of biological materials and structures: Nature’s lessons for the engineer Proc. Instn. Mech. Eng. 209, 221 (1995).

    Google Scholar 

  8. A.L. Oliveira, J.F. Mano and R.L. Reis: Nature-inspired calcium phosphate coatings: Present status and novel advances in the science of mimicry. Curr. Opin. Solid State Mater. Sci. 7, 309 (2003).

    Article  CAS  Google Scholar 

  9. S. Vogel: Cats’ Paws and Catapults: Mechanical Worlds of Nature and People (W.W. Norton, New York, 1998), Chap. 12 and 13.

    Google Scholar 

  10. J.Y. Rho, Kuhn-L. Spearing and P. Zioupos: Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20, 92 (1998).

    Article  CAS  Google Scholar 

  11. F. Song and Y.L. Bai: Effects of nanostructures on the fracture strength of interfaces in nacre. J. Mater. Res. 18, 1741 (2003).

    Article  CAS  Google Scholar 

  12. R.Z. Wang, Z. Suo, A.G. Evans, N. Yao and I.A. Aksay: Deformation mechanisms in nacre. J. Mater. Res. 16, 2485 (2001).

    Article  CAS  Google Scholar 

  13. A.G. Evans, Z. Suo, R.Z. Wang, I.A. Aksay, M.Y. He and J.W. Hutchinson: Model for the robust mechanical behavior of nacre. J. Mater. Res. 16, 2475 (2001).

    Article  CAS  Google Scholar 

  14. S. Kamat, X. Su, R. Ballarini and A.H. Heuer: Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature 405, 1036 (2000).

    Article  CAS  Google Scholar 

  15. J. Tan and W.M. Saltzman: Biomaterials with hierarchically defined micro- and nanoscale structure. Biomaterials 25, 3593 (2004).

    Article  CAS  Google Scholar 

  16. Z. Tang, N.A. Kotov, S. Magonov and B. Ozturk: Nanostructured artificial nacre. Nat. Mater. 2, 413 (2003).

    Article  CAS  Google Scholar 

  17. M. Serizawa, Y. Takemura, H. Wakano and T. Takahashi: Microsctructure of ivory. Gypsum & Lime 165, 23 (1980).

    Google Scholar 

  18. J.P. Grierson and A.C. Neville: Helicoidal architecture of fish eggshell. Tissue Cell 13, 819 (1981).

    Article  CAS  Google Scholar 

  19. F.Z. Cui, H.B. Wen, H.B. Zhang, H.D. Li and D.C. Liu: Anisotropic indentation morphology and hardness of natural ivory. Mater. Sci. Eng. C 2, 87 (1994).

    Article  Google Scholar 

  20. M. Rubner: Synthetic sea shell. Nature 423, 925 (2003).

    Article  CAS  Google Scholar 

  21. P. Fratzl, H.S. Gupta, E.P. Paschalis and P. Roschger: Structure and mechanical quality of the collagen-mineral nano-composite in bone. J. Mater. Chem. 14, 2115 (2004).

    Article  CAS  Google Scholar 

  22. C.J. Samarasekera and M.A. White (unpublished work).

  23. D. Arola and R.K. Reprogel: Effects of aging on the mechanical behavior of human dentin. Biomaterials 26, 4051 (2005).

    Article  CAS  Google Scholar 

  24. W. Bonfield and C.H. Li: Deformation and fracture of ivory. J. Appl. Phys. 36, 3181 (1965).

    Article  Google Scholar 

  25. D.G. Cahill and R.O. Pohl: Lattice vibrations and heat transport in crystals and glasses. Annu. Rev. Phys. Chem. 39, 93 (1988).

    Article  CAS  Google Scholar 

  26. T.K. Chu: Thermal conductivity of bone at low temperatures. J. Appl. Phys. 43, 3207 (1972).

    Article  CAS  Google Scholar 

  27. CRC Handbook of Chemistry and Physics, 61st ed., edited by R.C. Weast and M.J. Astle (CRC Press Inc., Boca Raton, FL, 1980), pp. D-174, E-11.

  28. S.A. Putnam, D.G. Cahill, B.J. Ash and L.S. Schadler: High-precision thermal conductivity measurements as a probe of polymer/nanoparticle interfaces. J. Appl. Phys. 94, 6785 (2003).

    Article  CAS  Google Scholar 

  29. C. Colbert and C. Garret: Photodensitometry of bone roentgenograms with an on-line computer. Clin. Orthop. 65, 39 (1969).

    Article  CAS  Google Scholar 

  30. P.B. Dobrin: Mechanical properties of arteries. Physiol. Rev. 58, 397 (1978).

    Article  CAS  Google Scholar 

  31. E.L. Andronikashvili, G.M. Mrevlishvili, G.S. Japaridze, V.M. Sokhadze and K.A. Kvavadze: Thermal properties of collagen in helical and random coiled states in the temperature range from 4° to 300 °C. Biopolymers 15, 1991 (1976).

    Article  CAS  Google Scholar 

  32. A. Bhattacharya and R.L. Mahajan: Temperature dependence of thermal conductivity of biological tissues. Physiol. Meas. 24, 769 (2003).

    Article  CAS  Google Scholar 

  33. S.L. Turek: Turek’s Orthopaedics: Principles and Their Application 5th ed. edited by S.L. Weinstein and J.A. Buckwalter (Lippincott, Philadelphia, PA, 1994), pp. 24–26.

  34. J. Werner and M. Buse: Temperature profiles with respect to inhomogeneity and geometry of the human body. J. Appl. Physiol. 65, 1100 (1988).

    Article  Google Scholar 

  35. A.M. Torgalkar: A resonance frequency technique to determine elastic modulus of hydroxyapatite. J. Biomed. Mater. Res. 13, 907 (1979).

    Article  CAS  Google Scholar 

  36. N.R. Boeree, J. Dove, J.J. Copper, J. Knowles and G.W. Hastings: Development of a degradable composite for orthopaedic use: Mechanical evaluation of an hydroxyapatite-polyhydroxybutyrate composite material. Biomaterials 14, 793 (1993).

    Article  CAS  Google Scholar 

  37. H.H. Moroi, K. Okimoto, R. Moroi and Y. Terada: Numeric approach to the biomechanical analysis of thermal effects in coated implants. Int. J. Prosthodont. 6, 564 (1993).

    CAS  Google Scholar 

  38. A. Rajaram: Tensile properties and the fracture of ivory. J. Mater. Sci. Lett. 5, 1077 (1986).

    Article  CAS  Google Scholar 

  39. R.G. Craig and J.M. Powers eds. Restorative Dental Materials, 11th ed. (Mosby, St. Louis, MO, 2002), p. 140.

    Google Scholar 

  40. R.S. Manly, H.C. Hodge and L.E. Ange: Density and refractive index studies of dental hard tissues. II. Density distribution curves. J. Dent. Res. 18, 203 (1939).

    Article  CAS  Google Scholar 

  41. F.A. Peyton, D.B. Mahler and B. Hershenov: Physical properties of dentine. J. Dent. Res. 31, 366 (1952).

    Article  CAS  Google Scholar 

  42. J.W. Stanford, K.V. Weigel, G.C. Paffenbarger and W.T. Sweeney: Compressive properties of hard tooth tissues and some restorative materials. J. Am. Dent. Ass. 60, 746 (1960).

    Article  CAS  Google Scholar 

  43. R.L. Bowen and M.M. Rodriguez: Tensile strength and modulus of elasticity of tooth structure and several restorative materials. J. Am. Dent. Ass. 64, 378 (1962).

    Article  CAS  Google Scholar 

  44. M.L. Lehman: Tensile strength of human dentin J. Dent. Res. 46, 197 (1967).

    Article  CAS  Google Scholar 

  45. F.A. Peyton and W.G. Simeral: The Specific Heat of Tooth Structure. University of Michigan School of Dentistry. Alumni Bull.33 (1954).

    Google Scholar 

  46. Y. Fukase, M. Saitoh, M. Kaketani, M. Ohashi and M. Nishiyama: Thermal coefficients of paste-paste type pulp capping cements. Dent. Mater. J. 11, 189 (1992).

    Article  CAS  Google Scholar 

  47. W.S. Brown, W.A. Dewey and H.R. Jacobs: Thermal properties of teeth. J. Dent. Res. 49, 752 (1970).

    Article  CAS  Google Scholar 

  48. R.G. Craig, F.A. Peyton and D.W. Johnson: Compressive properties of enamel, dental cements, and gold. J. Dent. Res. 40, 936 (1961).

    Article  Google Scholar 

  49. T. Kijima and M. Tsutsumi: Preparation and thermal properties of dense polycrystalline oxyhydroxyapatite. J. Am. Ceram. Soc. 62, 455 (1979).

    Article  CAS  Google Scholar 

  50. E.P. Egan Jr. Z.T. Wakefield and K.L. Elmore: Low-temperature heat capacity of hydroxyapatite. J. Am. Chem. Soc. 73, 5579 (1951).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Anne White.

Additional information

Address all correspondence to this author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakubinek, M.B., Samarasekera, C.J. & White, M.A. Elephant ivory: A low thermal conductivity, high strength nanocomposite. Journal of Materials Research 21, 287–282 (2006). https://doi.org/10.1557/jmr.2006.0029

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0029

Navigation