Skip to main content
Log in

Investigation of slip transmission behavior across grain boundaries in polycrystalline Ni3Al using nanoindentation

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The influence of grain boundaries on material deformation in Ni3Al was investigated by relating the material pile-up at grain boundaries and the propagation of slip across grain boundaries to the misorientation between the corresponding grains. Indentation tests were carried out using micro- and nanoindentation at distances shorter than the radius of indent size from a grain boundary on Ni3Al. The indents were observed using scanning electron microscopy and non-contact-mode atomic force microscopy. Repeated experimentation did not reveal a rising trend of hardness near grain boundaries, indicating that hardness is not a sensitive parameter to measure grain boundary strengthening effects. However, it was observed that the slip transfer behavior across a grain boundary has a strong dependence on a local misorientation factor m′ relating the misorientation of slip planes and slip directions on either side of the grain boundary. This result agrees with the fundamental assumption in the physical explanation of the Hall–Petch effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.T. Aust, R.E. Hanneman, P. Niessen, and J.H. Westbrook, Acta Metall. 16, 291 (1968).

    Article  CAS  Google Scholar 

  2. T. Watanabe, S. Kitamura, and S. Karashima, Acta Metall. 28, 455 (1980).

    Article  CAS  Google Scholar 

  3. L.B. Harris, V.R. Howes, and N.G. Cutmore, J. Am. Ceram. Soc. 65, 35 (1982).

    Article  CAS  Google Scholar 

  4. Y.T. Chou, B.C. Cai, A.D. Romig, Jr., and L.S. Lin, Philos. Mag. A 47, 363 (1983).

    Article  CAS  Google Scholar 

  5. Z.Q. Zhou and Y.T. Chou, J. Less-Common Met. 114, 323 (1985).

    Article  CAS  Google Scholar 

  6. J.W. Wyrzykowski and M.W. Grabski, Philos. Mag. A. 53, 505 (1986).

    Article  CAS  Google Scholar 

  7. A.H.W. Ngan and Y.L. Chiu, in Fundamentals of Nanoindentation and Nanotribology II, edited by S.P. Baker, R.F. Cook, S.G. Corcoran, and N.R. Moody (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001), p. Q4.10.

  8. E.M. Schulson, T.P. Weihs, I. Baker, H.J. Frost, and J.A. Horton, Acta Metall. 34, 1395 (1986).

    Article  CAS  Google Scholar 

  9. C.S. Lee, G.W. Han, R.E. Smallman, D. Feng, and J.K.L. Lai, Acta Mater. 47, 1823 (1999).

    Article  CAS  Google Scholar 

  10. B.N. Lucas and W.C. Oliver, Metall. Mater. Trans. A 30A, 601 (1999).

    Article  CAS  Google Scholar 

  11. S.A. Syed Asif and J.B. Pethica, Philos. Mag. A. 76, 1105 (1997).

    Article  Google Scholar 

  12. L.E. Samuels and T.O. Mulhearn, J. Mech. Phys. 5, 125 (1956).

    Article  Google Scholar 

  13. K.L. Johnson, J. Mech. Phys. Solids 18, 115 (1970).

    Article  Google Scholar 

  14. D. Tabor, The Hardness of Metals (Clarendon Press. Oxford, U.K., 1951), pp. 160.

  15. W. Wang and K. Lu, J. Mater. Res. 17, 2314 (2002).

    Article  CAS  Google Scholar 

  16. W.D. Nix and H.J. Gao, Mech. Phys. Solids 46, 411 (1998).

    Article  CAS  Google Scholar 

  17. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  18. G. Feng and A.H.W. Ngan, J. Mater. Res. 17, 660 (2002).

    Article  CAS  Google Scholar 

  19. A.H.W. Ngan and B. Tang, J. Mater. Res. 17, 2604 (2002).

    Article  CAS  Google Scholar 

  20. B. Tang and A.H.W. Ngan, J. Mater. Res. 18, 1141 (2003).

    Article  CAS  Google Scholar 

  21. A.F. Voter and S.P. Chen, in Characterization of Defects in Materials, edited by R.W. Siegel, J.R. Weertman, and R. Sinclair (Mater. Res. Soc. Symp. Proc. 82, Pittsburgh, PA, 1987), p. 175.

  22. J.J. Vlassak and W.D. Nix, J. Mech. Phys. Solids 42, 1223 (1994).

    Article  Google Scholar 

  23. Y.M. Soifer, A. Verdyan, M. Kazakevich, and E. Rabkin, Scr. Mater. 47, 799 (2002).

    Article  CAS  Google Scholar 

  24. Y. Liu and A.H.W. Ngan, Scr. Mater. 44, 237 (2001).

    Article  CAS  Google Scholar 

  25. R.E. Smallman and R.J. Bishop, Metals and Materials: Science, Processes, Applications (Butterworth-Heinemann, Oxford, U.K., 1995), pp. 229.

  26. W. Bollmann, Crystal Defects and Crystalline Interfaces (Springer-Verlag, Berlin, 1970).

  27. H. Gleiter and P. Pumphrey, Mater. Sci. Eng. 25, 159 (1976).

    Article  CAS  Google Scholar 

  28. T. Malis and K. Tangri, Acta Metall. 27, 25 (1979).

    Article  CAS  Google Scholar 

  29. Z. Shen, R.H. Wagoner, and W. Clark, Acta Metall. 36, 3231 (1988).

    Article  CAS  Google Scholar 

  30. S. Sangal, K.J. Kurzydlowski, and K. Tangri, Acta Metall. Mater. 39, 1281 (1991).

    Article  CAS  Google Scholar 

  31. L.H. Friedman and D.C. Chrzan, Philos. Mag. A 77, 1185 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. W. Ngan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wo, P.C., Ngan, A.H.W. Investigation of slip transmission behavior across grain boundaries in polycrystalline Ni3Al using nanoindentation. Journal of Materials Research 19, 189–201 (2004). https://doi.org/10.1557/jmr.2004.19.1.189

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2004.19.1.189

Navigation