Skip to main content
Log in

Far-infrared bands in plasmonic metal-insulator-metal absorbers optimized for long-wave infrared

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Metal-insulator-metal (MIM) resonant absorbers comprise a conducting ground plane, a dielectric of thickness t, and thin separated metal top-surface structures of dimension l. The fundamental resonance wavelength is predicted by an analytic standing-wave model based on t, l, and the dielectric refractive index spectrum. For the dielectrics SiO2, AlN, and TiO2, values for l of a few microns give fundamental resonances in the 8–12 µm long-wave infrared (LWIR) wavelength region. Agreement with theory is better for t/l exceeding 0.1. Harmonics at shorter wavelengths were already known, but we show that there are additional resonances in the far-infrared 20–50 µm wavelength range in MIM structures designed to have LWIR fundamental resonances. These new resonances are consistent with the model if far-IR dispersion features in the index spectrum are considered. LWIR fundamental absorptions are experimentally shown to be optimized for a ratio t/l of 0.1 to 0.3 for SiO2- and AlN-based MIM absorbers, respectively, with TiO2-based MIM optimized at an intermediate ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. Smith, J. Nath, J. Ginn, R. E. Peale, and D. Shelton: Responsivity improvements for a vanadium oxide microbolometer using subwavelength resonant absorbers. Proc. SPIE 9819, 98191Q (2016).

    Article  Google Scholar 

  2. V. J. Gokhale, P. D. Myers, and M. Rais-Zadeh: Subwavelength plasmonic absorbers for spectrally selective resonant infrared detectors. Proc. IEEE Sensors Conf. Valencia, Spain (2–5 Nov. 2014). DOI: https://doi.org/10.1109/ICSENS.2014.6985167

  3. J. Nath, S. Modak, I. Rezadad, D. Panjwani, F. Rezaie, J. W. Cleary, and R. E. Peale: Far-infrared absorber based on standing-wave resonances in metal-dielectric-metal cavity. Opt. Express 23, 20366 (2015).

    Article  CAS  Google Scholar 

  4. S. R. Calhoun, V. C. Lowry, R. Stack, R. N. Evans, J. R. Brescia, C. J. Fredricksen, J. Nath, and R. E. Peale: Effect of dispersion on metal-insulator-metal infrared absorption resonances. MRS. Comm. 8, 830 (2018).

    Article  CAS  Google Scholar 

  5. J. Nath, D. Maukonen, E. Smith, P. Figueiredo, G. Zummo, D. Panjwani, R. E. Peale, G. Boreman, J. W. Cleary, and K. Eyink: Thin-film, wide-angle, design-tunable, selective absorber from near UV to far infrared. Proc. SPIE 8704, 8041D (2013).

    Google Scholar 

  6. J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink,:Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Appl. Opt. 51, 6789 (2012).

    CAS  Google Scholar 

  7. S. Popova, T. Tolstykh, and V. Vorobev: Optical characteristics of amorphous quartz in the 1400–200 cm−1 region. Opt. Spectrosc. 33, 444 (1972).

    Google Scholar 

  8. R. Kitamura, L. Pilon, and M. Jonasz: Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Appl. Opt. 33, 8118 (2007).

    Article  Google Scholar 

  9. Refractiveindex.info. (accessed on Nov. 15, 2018).

  10. E. D. Palik: Handbook of Optical Constants of Solids, (Academic 1997) pp. 394–396.

  11. J. Park, J-H. Kang, X. Liu and M. L. Brongersma: Electrically Tunable Epsilon-Near-Zero (ENZ) Metafilm Absorbers. Scientific Reports 5, 15754 (2015).

    Article  CAS  Google Scholar 

  12. M. J. Adams: An Introduction to Optical Waveguides, (Wiley 1981) p. 68.

  13. Y. Ye, Y. Jin, and S. He,:Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. JOSA B 27, 498 (2010).

    CAS  Google Scholar 

  14. J. Nath, D. Panjwani, F. K.- Rezaie, M. Yesiltas, E. M. Smith, J. C. Ginn, D. J. Shelton, C. Hirschmugl, J. W. Cleary, R. E. Peale: Infra-red spectral microscopy of standing-wave resonances in single metal-dielectric-metal thin-film cavity. Proc. SPIE 9544, 95442M (2015).

    Google Scholar 

  15. A. Lefebvre, D. Costantini, I. Doyen, Q. Lévesque, E. Lorent, D. Jacolin, J-J. Greffet, S. Boutami, and H. Benisty,:CMOS compatible metal-insulator-metal plasmonic perfect absorbers. Optical Materials Express 6, 2389 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evans, R.N., Calhoun, S.R., Brescia, J.R. et al. Far-infrared bands in plasmonic metal-insulator-metal absorbers optimized for long-wave infrared. MRS Advances 4, 667–674 (2019). https://doi.org/10.1557/adv.2019.53

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.53

Navigation