Skip to main content
Log in

Investigating the Phase-Morphology of PLLA-PCL Multiblock Copolymer / PDLA Blends Cross-linked Using Stereocomplexation

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The macroscale function of multicomponent polymeric materials is dependent on their phasemorphology. Here, we investigate the morphological structure of a multiblock copolymer consisting of poly(L-lactide) and poly(ε-caprolactone) segments (PLLA-PCL), physically cross-linked by stereocomplexation with a low molecular weight poly(D-lactide) oligomer (PDLA). The effects of blend composition and PLLA-PCL molecular structure on the morphology are elucidated by AFM, TEM and SAXS. We identify the formation of a lattice pattern, composed of PLA domains within a PCL matrix, with an average domain spacing d0 = 12–19 nm. The size of the PLA domains were found to be proportional to the block length of the PCL segment of the copolymer and inversely proportional to the PDLA content of the blend. Changing the PLLA-PCL / PDLA ratio caused a shift in the melt transition Tm attributed to the PLA stereocomplex crystallites, indicating partial amorphous phase dilution of the PLA and PCL components within the semicrystalline material. By elucidating the phase structure and thermal character of multifunctional PLLA-PCL / PDLA blends, we illustrate how composition affects the internal structure and thermal properties of multicomponent polymeric materials. This study should facilitate the more effective incorporation of a variety of polymeric structural units capable of stimuli responsive phase transitions, where an understanding the phase-morphology of each component will enable the production of multifunctional soft-actuators with enhanced performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Hillmyer and W.B. Tolman, Acc. Chem. Res. 47, 2390 (2014).

    Article  CAS  Google Scholar 

  2. A.-C. Albertsson and I.K. Varma, Biomacromolecules 4, 1466 (2003).

    Article  CAS  Google Scholar 

  3. S. Farah, D.G. Anderson and R. Langer, Adv. Drug Del. Rev. 107, 367 (2016).

    Article  CAS  Google Scholar 

  4. T.M. Allen and P.R. Cullis, Science 303, 1818 (2004).

    Article  CAS  Google Scholar 

  5. P. Saini, M. Arora and M.N.V.R. Kumar, Adv. Drug Del. Rev. 107, 47 (2016).

    Article  CAS  Google Scholar 

  6. R. Auras, B. Harte and S. Selke, Macromol. Biosci. 4, 835 (2004).

    Article  CAS  Google Scholar 

  7. M. Hiljanen-Vainio, P. Varpomaa, J. Seppälä and P. Törmälä, Macromol. Chem. Phys. 197, 1503 (1996).

    Article  CAS  Google Scholar 

  8. H. Liu and J. Zhang, J. Polym. Sci., Part B: Polym. Phys. 49, 1051 (2011).

    Article  CAS  Google Scholar 

  9. M.J. Fasolka and A.M. Mayes, Annu. Rev. Mater. Res. 31, 323 (2001).

    Article  CAS  Google Scholar 

  10. J.K. Kim, S.Y. Yang, Y. Lee and Y. Kim, Progress in Polymer Science (Oxford) 35, 1325 (2010).

    Article  CAS  Google Scholar 

  11. A. Lendlein and O.E.C. Gould, Nat. Rev. Mater. 4, 116 (2019).

    Article  Google Scholar 

  12. C. Koning, M. Van Duin, C. Pagnoulle and R. Jerome, Progress in Polymer Science (Oxford) 23, 707 (1998).

    Article  CAS  Google Scholar 

  13. L. Jiang, M.P. Wolcott and J. Zhang, Biomacromolecules 7, 199 (2006).

    Article  Google Scholar 

  14. D. Garlotta, J. Polym. Environ. 9, 63 (2001).

    Article  CAS  Google Scholar 

  15. M. Labet and W. Thielemans, Chem. Soc. Rev. 38, 3484 (2009).

    Article  CAS  Google Scholar 

  16. J.-m. Yang, H.-l. Chen, J.-w. You and J.C. Hwang, 29, 657 (1997).

  17. R. Dell’Erba, G. Groeninckx, G. Maglio, M. Malinconico and A. Migliozzi, Polymer 42, 7831 (2001).

    Article  Google Scholar 

  18. O.J. Botlhoko, J. Ramontja and S.S. Ray, Polym. Degrad. Stab. 154, 84 (2018).

    Article  CAS  Google Scholar 

  19. D. Newman, E. Laredo, A. Bello, A. Grillo, J.L. Feijoo and A.J. Muller, Macromolecules 42, 5219 (2009).

    Article  CAS  Google Scholar 

  20. A.M. Mannion, F.S. Bates and C.W. MacOsko, Macromolecules 49, 4587 (2016).

    Article  CAS  Google Scholar 

  21. E. Laredo, N. Prutsky, A. Bello, M. Grimau, R.V. Castillo, A.J. Müller and P. Dubois, European Physical Journal E 23, 295 (2007).

    Article  CAS  Google Scholar 

  22. W. Han, X. Liao, Q. Yang, G. Li, B. He, W. Zhu and Z. Hao, RSC Advances 7, 22515 (2017).

    Article  CAS  Google Scholar 

  23. D.-d. Yang, W. Liu, H.-m. Zhu, G. Wu, S.-c. Chen, X.-l. Wang and Y.-z. Wang, ACS Appl. Mater. Interfaces 10, 26594 (2018).

    Article  CAS  Google Scholar 

  24. H. Tsuji, Adv. Drug Del. Rev. 107, 97 (2016).

    Article  CAS  Google Scholar 

  25. C.L. Wanamaker, W.B. Tolman and M.A. Hillmyer, Macromolecular Symposia 283–284, 130 (2009).

    Article  Google Scholar 

  26. Z. Xiong, X. Zhang, R.R. Wang, S. De Vos, R.R. Wang, C.A.P. Joziasse and D. Wang, Polymer 76, 98 (2015).

    Article  CAS  Google Scholar 

  27. M. Jikei, Y. Takeyama, Y. Yamadoi, N. Shinbo, K. Matsumoto, M. Motokawa, K. Ishibashi and F. Yamamoto, Polym. J. 47, 657 (2015).

    Article  CAS  Google Scholar 

  28. V. Izraylit, Private Communication.

  29. G. Perego, T. Vercellio and G. Balbontin, Die Makromolekulare Chemie 194, 2463 (1993).

    Article  CAS  Google Scholar 

  30. V. Crescenzi, G. Manzini, G. Calzolari and C. Borri, Eur. Polym. J. 8, 449 (1972).

    Article  CAS  Google Scholar 

  31. H. Tsuji, Macromol. Biosci. 5, 569 (2005).

    Article  CAS  Google Scholar 

  32. A. Lendlein and S. Kelch, Angew. Chem. Int. Ed. 41, 2034 (2002).

    Article  CAS  Google Scholar 

  33. S.J. de Jong, W.N.E.E. van Dijk-Wolthuis, J.J. Kettenes-Van Den Bosch, P.J.W.W. Schuyl and W.E. Hennink, Macromolecules 31, 6397 (1998).

    Article  Google Scholar 

  34. S. Pensec, M. Leroy, H. Akkouche and N. Spassky, Polym. Bull. 45, 373 (2000).

    Article  CAS  Google Scholar 

  35. O.V. Stoyanov, R.M. Khuzakhanov, L.F. Stoyanova, V.K. Gerasimov, A.E. Chalykh, A.D. Aliev and M.V. Vokal’, Polymer Science Series D 4, 118 (2011).

    Article  CAS  Google Scholar 

  36. K. Sen, B. Mukherjee, A.S. Bhattacharyya, L.K. Sanghi, K. Bhowmick and R.T. Centre, 157, 45 (1990).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izraylit, V., Gould, O.E.C., Kratz, K. et al. Investigating the Phase-Morphology of PLLA-PCL Multiblock Copolymer / PDLA Blends Cross-linked Using Stereocomplexation. MRS Advances 5, 699–707 (2020). https://doi.org/10.1557/adv.2019.465

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.465

Navigation