Skip to main content

Advertisement

Log in

Zn2+- Controlled Crystallization and Microstructure in K-Li-Mg-B-Si-Al-F Glass

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The crystallization of (9-X) K2O-1Li2O-12MgO-10B2O3-40SiO2-16Al2O3-12MgF2-X PbO/BaO/ZnO (X =0/5) composition (wt.%) were studied by means of dilatometry, DSC, XRD, SEM and microhardness analysis. Density of base K-Li-Mg-B-Si-Al-F glass (2.59 g.cm–3) is found to be increased on addition of the network modifier oxides PbO, BaO and ZnO content. Addition of Pb2+, Ba2+ and Zn2+ furthermore increased the glass transition temperature (Tg.). A characteristic exothermic hump is found to be appeared in DSC thermograph at the temperature range 800–950°C; and that is ascribed to the formation of crystalline phase fluorophlogopite mica, KMg3(AlSi3O10)F2. Opaque glass-ceramics were prepared from K-Li-Mg-B-Si-Al-F glasses (with and without containing PbO, BaO and ZnO content) by controlled heat-treatment at 1000°C. Interlocked type microstructure combined of flake like fluorophlogopite mica crystals is obtained in ZnO-containing K-Li-Mg-B-Si-Al-F glass-ceramic; and such microstructural pattern is ascribed to cause large thermal-expansion (>11.5×10-6/K, 50–800°C).Vickers Microhardness of base glass-ceramic (5.12 GPa) is increased when contains ZnO (5.26 GPa). ZnO-containing boroaluminosilicate glass-ceramic is, hence, considered with potential interest as they can exhibit the microcrack resistivity in high temperature recycling operation (like SOFC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.N. Hoda, G.H. Beall, “Alkaline Earth Mica Glass-ceramics” In: J. H. Simmons, D. R. Uhlmann, G. H. Beall (Editors), Advances in Nucleation and Crystallization in Glasses, The American Ceramic Society, Westerville, pp. 287300 (1982).

    Google Scholar 

  2. P. W. McMillan, G. Partridge, J. Mater. Sci. 7, 847 (1972).

    CAS  Google Scholar 

  3. W. Holand, G. H. Beall, Glass-Ceramic Technology, The American Ceramic Society, Westerville, Ohio, USA, 2002.

    Google Scholar 

  4. M. Garai, N. Sasmal, B. Karmakar, Ind. J. Mater. Sci., 638341, 1 (2015).

    Google Scholar 

  5. T. Hoche, S. Habelitz, I.I. Khodos, J. Cryst. Growth, 192, 185 (1998).

    CAS  Google Scholar 

  6. M. Garai, N. Sasmal, A. R. Molla, B. Karmakar, Solid state sci. 44, 10 (2015).

    CAS  Google Scholar 

  7. M. Kerstan, M. Muller, C. Russel, Mater. Res. Bull. 46, 2456 (2011).

    CAS  Google Scholar 

  8. Y.P. Tarlakov, I.F. Eskova, A.M. Shevyakov, Issled. Strukt. Sostyaniya Neorg. Veshchestu, 1, 7, (1974).

    CAS  Google Scholar 

  9. E.M.A. Hamzawy, H. Darwish, Mater. Chem. Phys. 71, 70 (2001).

    CAS  Google Scholar 

  10. C. B. da Silveira, S. D. de Campos, S. C. de Castro, Y. Kawano, Mater. Res. Bull. 34, 1661 (1999).

    Google Scholar 

  11. T. Yazawa, H. Tanaka, K. Eguchi, S. Yokoyama, J. Mater. Sci. 29, 3433 (1994).

    CAS  Google Scholar 

  12. J. E. Shelby, J. Applied Phys., 49, 5885 (1978).

    CAS  Google Scholar 

  13. S. Ghosh, P. Kundu, A. D. Sharma, R. N. Basu, H. S. Maiti, J. Eu. Ceram. Soc. 28, 69 (2008).

    CAS  Google Scholar 

  14. S. M. Salman, S. N. Salama, H. A. Abo-Mosallam, Ceramics International, 43, 9424 (2017).

    CAS  Google Scholar 

  15. M. Garai, N. Sasmal, A. R. Molla, S. P. Singh, A. Tarafder and B. Karmakar, J. Mater. Sci. 49, 1612 (2014).

    CAS  Google Scholar 

  16. E. Ercenk, S. Yilmaz, J. Ceram. Proc. Res. 16, 169 (2015).

    Google Scholar 

  17. M. Garai, B. Karmakar, J. Alloys Compd. 678, 360 (2016).

  18. S. A. M. Abdel-Hameed, N. Ismail, H. F. Youssef, H. E. H. Sadek, M. A. Marzouk, International Journal of Hydrogen Energy, 42, 6829 (2017).

    CAS  Google Scholar 

  19. M. Garai, N. Sasmal, A. R. Molla, A. Tarafder, B. Karmakar, J. Mater. Sci.Tech.31, 110 (2015).

    CAS  Google Scholar 

  20. S. Gali, K. Ravikumar, B. V. S. Murthy, B. Basu, Dental Materials, 34, 36 (2018).

    Google Scholar 

  21. J. Henry, R. G. Hill, J. Non-crystalline Solids. 319, 13 (2003).

    CAS  Google Scholar 

  22. S. Roy, B. Basu, J. Mater. Sci.: Mater. Med. 21, 109 (2010).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garai, M., Maurya, A.K. & Roy, S. Zn2+- Controlled Crystallization and Microstructure in K-Li-Mg-B-Si-Al-F Glass. MRS Advances 3, 3525–3533 (2018). https://doi.org/10.1557/adv.2018.526

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.526

Navigation