Skip to main content
Log in

The central role of ligands in electron transfer from perovskite nanocrystals

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The nanoscale miniaturization of hybrid organic-inorganic perovskite has given rise to new functionalities, but the full understanding of the multifaceted properties of perovskite nanostructures is still incomplete. Using a combination of optical and magnetic resonance (EPR) spectroscopies, we focused our investigation on the photoinduced electron transfer process taking place in perovskite nanocrystals blended with the fullerene derivative PCBM. In particular we analyzed the different effect of two types of nanocrystal ligands, namely octylamine and oleylamine, on the photoinduced processes. The electron transfer process resulted in efficient fluorescence quenching in a mixed solution and in the formation of charges (PCBM anions) detected by EPR in the blends. Both the optical and EPR techniques revealed a stronger effect when the shorter ligand is present. Finally, pulsed EPR demonstrated the stabilization of the photogenerated charges in proximity of perovskite nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Yan and B.R. Saunders, RSC Adv., 4(82),43286–43314 (2014)

    Article  CAS  Google Scholar 

  2. H.S. Jung and N.-G. Park, Small, 11(1),10–25 (2015)

    Article  CAS  Google Scholar 

  3. T.M. Brenner, D.A. Egger, L. Kronik, G. Hodes, and D. Cahen, Nat. Rev. Mater., 1, 15007 (2016)

    Article  CAS  Google Scholar 

  4. J.A. Sichert, Y. Tong, N. Mutz, M. Vollmer, S. Fischer, K.Z. Milowska, R. García Cortadella, B. Nickel, C. Cardenas-Daw, J.K. Stolarczyk, A.S. Urban, and J. Feldmann, Nano Lett., 15(10),6521–6527 (2015)

    Article  CAS  Google Scholar 

  5. L.C. Schmidt, A. Pertegás, S. González-Carrero, O. Malinkiewicz, S. Agouram, G. Mínguez Espallargas, H.J. Bolink, R.E. Galian, and J. Pérez-Prieto, J. Am. Chem. Soc., 136(3),850–853 (2014)

    Article  CAS  Google Scholar 

  6. S. González-Carrero, R.E. Galian, and J. Pérez-Prieto, Part Part Syst Charact., 32(7),709–720 (2015)

    Article  Google Scholar 

  7. B. Luo, Y.-C. Pu, Y. Yang, S.A. Lindley, G. Abdelmageed, H. Ashry, Y. Li, X. Li, and J.Z. Zhang, J. Phys. Chem. C, 119(47),26672–26682 (2015)

    Article  CAS  Google Scholar 

  8. G. Li, Z.K. Tan, D. Di, M.L. Lai, L. Jiang, J.H. Lim, R.H. Friend, and N.C. Greenham, Nano Lett., 15(4),2640–2644 (2015)

    Article  CAS  Google Scholar 

  9. L. Martinez-Sarti, T.M. Koh, M.-G. La-Placa, P.P. Boix, M. Sessolo, S.G. Mhaisalkar, and H.J. Bolink, Chem. Commun., 52(76),11351–11354 (2016)

    Article  CAS  Google Scholar 

  10. S.A. Veldhuis, P.P. Boix, N. Yantara, M. Li, T.C. Sum, N. Mathews, and S.G. Mhaisalkar, Adv. Mater., 28(32),6804–6834 (2016)

    Article  CAS  Google Scholar 

  11. Y. Shirasaki, G.J. Supran, M.G. Bawendi, and V. Bulovic, Nat. Photon., 7(1),13–23 (2013)

    Article  CAS  Google Scholar 

  12. G.H. Ahmed, J. Liu, M.R. Parida, B. Murali, R. Bose, N.M. AlYami, M.N. Hedhili, W. Peng, J. Pan, T.M.D. Besong, O.M. Bakr, and O.F. Mohammed, J. Phys. Chem. Lett., 7(19),3913–3919 (2016)

    Article  CAS  Google Scholar 

  13. L. Wang, J. Han, B. Sundahl, S. Thornton, Y. Zhu, R. Zhou, C. Jaye, H. Liu, Z.-Q. Li, G.T. Taylor, D.A. Fischer, J. Appenzeller, R.J. Harrison, and S.S. Wong, Nanoscale, 8(34),15553–15570 (2016)

    Article  CAS  Google Scholar 

  14. K.V. Vokhmintcev, P.S. Samokhvalov, and I. Nabiev, Nano Today, 11(2),189–211 (2016)

    Article  CAS  Google Scholar 

  15. H.J. Yun, T. Paik, M.E. Edley, J.B. Baxter, and C.B. Murray, ACS Appl. Mater. Interfaces, 6(5),3721–3728 (2014)

    Article  CAS  Google Scholar 

  16. F. Zhang, H. Zhong, C. Chen, X.-g. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, ACS Nano, 9(4),4533–4542 (2015)

    Article  CAS  Google Scholar 

  17. C. Muthu, S. Agarwal, A. Vijayan, P. Hazra, K.B. Jinesh, and V.C. Nair, Adv. Mater. Interfaces, 3(18),1600092 (2016)

  18. H. Boaz and G.K. Rollefson, J. Am. Chem. Soc., 72(8),3435–3443 (1950)

    Article  CAS  Google Scholar 

  19. K. Zheng, K. Žídek, M. Abdellah, M.E. Messing, M.J. Al-Marri, and T. Pullerits, J. Phys. Chem. C, 120(5),3077–3084 (2016)

    Article  CAS  Google Scholar 

  20. D.G. Chris, Meas. Sci. Technol., 12(9), R53 (2001)

  21. K. Campbell, A. Zappas, U. Bunz, Y.S. Thio, and D.G. Bucknall, J. Photochem. Photobiol., A, 249, 41–46 (2012)

    CAS  Google Scholar 

  22. J. Niklas and O.G. Poluektov, Adv. Energy Mater., 1602226 (2017)

    Article  Google Scholar 

  23. A. Lefrançois, B. Luszczynska, B. Pepin-Donat, C. Lombard, B. Bouthinon, J.-M. Verilhac, M. Gromova, J. Faure-Vincent, S. Pouget, F. Chandezon, S. Sadki, and P. Reiss, Sci Rep., 5, 7768 (2015)

    Article  Google Scholar 

  24. F. Witt, M. Kruszynska, H. Borchert, and J. Parisi, J. Phys. Chem. Lett., 1(20),2999–3003 (2010)

    Article  CAS  Google Scholar 

  25. M. Pientka, J. Wisch, S. Böger, J. Parisi, V. Dyakonov, A. Rogach, D. Talapin, and H. Weller, Thin Solid Films, 451–452, 48–53 (2004)

  26. A. Schweiger and G. Jeschke, in Principles of Pulse Electron Paramagnetic Resonance, (Oxford University Press, 2001)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Privitera, A., Righetto, M., Bozio, R. et al. The central role of ligands in electron transfer from perovskite nanocrystals. MRS Advances 2, 2327–2335 (2017). https://doi.org/10.1557/adv.2017.302

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2017.302

Navigation