Skip to main content

Advertisement

Log in

Design of Porous Metal-Organic Frameworks for Adsorption Driven Thermal Batteries

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Thermal batteries based on a reversible adsorption/desorption of a working fluid (water, methanol, ammonia) rather than the conventional vapor compression is a promising alternative to exploit waste thermal energy for heat reallocation. In this context, there is an increasing interest to find novel porous solids able to adsorb a high energy density of working fluid under low relative vapor pressure condition combined with an easy ability of regeneration (desorption) at low temperature, which are the major requirements for adsorption driven heat pumps and chillers. The porous crystalline hybrid materials named Metal–Organic Frameworks (MOF) represent a great source of inspiration for sorption based-applications owing to their tunable chemical and topological features associated with a large variability of pore sizes. Recently, we have designed a new MOF named MIL-160 (MIL stands for Materials of Institut Lavoisier), isostructural to CAU-10, built from the assembly of corner sharing aluminum chains octahedra AlO4(OH)2 with the 2,5-furandicarboxylic linker substituting the pristine organic linker, 1,4-benzenedicarboxylate. This ligand replacement strategy proved to enhance both the hydrophilicity of the MOF and its amount of water adsorbed at low p/p0. This designed solid was synthesized and its chemical stability/adsorption performances verified. Here, we have extended this study by incorporating other polar heterocyclic linkers and a comparative computational study of the water adsorption performances of these novel structures has been performed. To that purpose, the cell and geometry optimizations of all hypothetical frameworks were first performed at the density functional theory level and their water adsorption isotherms were further predicted by using force-field based Grand-Canonical Monte Carlo simulations. This study reveals the ease tunable water affinity of MOF for the desired application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. K. Henninger, H. A. Habib, C. Janiak , J. Am. Chem. Soc. 131 , 2776 (2009)

    CAS  Google Scholar 

  2. M. F. de Lange, K. J. F. M. Verouden, T. J. H. Vlugt, J. Gascon, F. Kapteijn, Chem. Rev. 115 (22), 12205 (2015)

    Google Scholar 

  3. S. J. Metcalf, Z. Tamainot-Telto, R. E. Critoph, Appl. Therm. Eng. 31, 2197 (2011)

    CAS  Google Scholar 

  4. J. Canivet, A. Fateeva, Y. Guo, B. Coasnecd, D. Farrusseng, Chem. Soc. Rev. 43, 5594–5617 (2014)

    CAS  Google Scholar 

  5. T. Devic, C. Serre , Chem. Soc. Rev. 43, 6097 (2014)

    CAS  Google Scholar 

  6. D. Fröhlich , S. K. Henninger , C. Janiak , Dalton Trans. 43, 15300 (2014)

    Google Scholar 

  7. M. F De Lange, C. P. Ottevanger, M. Wiegman, T. J. H. Vlugt , J. Gascon , F. Kapteijn , CrystEngComm, 17, 281 (2014)

    Google Scholar 

  8. F. Jeremias, D. Fröhlich , C. Janiak , S. K. Henninger , RSC Adv. 4, 24073 (2014)

    CAS  Google Scholar 

  9. H. Reinsch, M. A. van der Veen, B. Gil, B. Marszalek, T. Verbiest, D. de Vos, and N. Stock, Chem. Mater. 25 (1), 17–26 (2013)

    CAS  Google Scholar 

  10. A. Cadiau et. al. Advanced Material 27(32), 4775–4780 (2015)

    CAS  Google Scholar 

  11. G. Lippert, J. Hutter, M. Parrinello, Molec. Phys.. 92 (3), 477–487 (1997)

    CAS  Google Scholar 

  12. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    CAS  Google Scholar 

  13. R. S. Mulliken, J. Chem. Phys., 23, 1833 (1955)

    CAS  Google Scholar 

  14. B. Delley, J. Chem. Phys. 92, 508–517 (1990)

    CAS  Google Scholar 

  15. Q. Yang, C. Zhong, J. Phys. Chem. B 110, 17776 (2006)

    CAS  Google Scholar 

  16. J. L. F. Abascal, C. A. Vega, J. Chem. Phys. 123, 234505 (2005)

    CAS  Google Scholar 

  17. A. K. Rappé, J. Casewit, K. S. Colwell, W. A. GoddardIII, W. M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992)

    Google Scholar 

  18. Q Y. Yang, S. Vaesen, M. Vishnuvarthan, F. Ragon, C. Serre, A. Vimont, M. Daturi, G. De Weireld, G. Maurin, J. of Mat. Chem. 22, 10210 (2012)

    CAS  Google Scholar 

  19. I. A. Ibarra, S. Yang, X. Lin, A. J. Blake, P. J. Rizkallah, H. Nowell, D. R. Allan, N. R. Champness, P. Hubberstey, M. Schrö der, Chem. Commun., 47, 8304 (2011)

    CAS  Google Scholar 

  20. A. V. Neimark, P. I. Ravikovitch, Langmuir 13, 5148–5160 (1997)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damasceno Borges, D., Maurin, G. & Galvão, D.S. Design of Porous Metal-Organic Frameworks for Adsorption Driven Thermal Batteries. MRS Advances 2, 519–524 (2017). https://doi.org/10.1557/adv.2017.181

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2017.181

Navigation