Skip to main content
Log in

Thin n/p GaAs Junctions for Novel High-Efficiency Phototransducers Based on a Vertical Epitaxial Heterostructure Architecture

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Thin GaAs photovoltaic heterostructures are grown by MOCVD with various p-GaAs base thicknesses. The total n/p absorbing thickness is varied systematically. Output voltages up to ~1.155V were obtained for individual n/p junctions at an average illumination intensity of ~8W/cm2. Novel phototransducer devices are then achieved with a vertical epitaxial heterostructure architecture, monolithically integrating 5 or more such thin n/p junctions. Around the design wavelength, the stacked heterostructure design is yielding an optimal external quantum efficiency approaching unity divided by the number of junctions. The modeled and measured conversion efficiencies are exceeding 60%. The photocarrier extraction properties are simulated for different junction thicknesses using a model based on a 3-dimensional (3D) radially-symmetric TCAD implementation of the heterostructures. The study clearly demonstrates that for such thin n/p junctions the photocarrier extraction can still be efficient due to the operation at reduced current densities and higher voltages in heterostructures enhancing electrical power extraction. With the supplementary add-on of a window layer with a reduced sheet resistance for the stacked structure, we demonstrate the possible efficient operation of phototransducers for optical inputs exceeding 150 W/cm2, even for the case of devices designed without gridlines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Behaghel, R. Tamaki, N. Vandamme, K. Watanabe, C. Dupuis, N. Bardou, H. Sodabanlu, A. Cattoni, Y. Okada, M. Sugiyama, S. Collin, and J.-F. Guillemoles, Appl. Phys. Lett. 106, 081107 (2015).

    Article  Google Scholar 

  2. Vandamme et al, IEEE J. Photov. 5, 565 (2014).

    Article  Google Scholar 

  3. O. D. Miller, E. Yablonovitch, and S. R. Kurtz, IEEE J. Photovoltaics 2, 303 (2012).

    Article  Google Scholar 

  4. U. Rau, U. W. Paetzold, and T. Kirchartz, Phys. Rev. B 90, 035211 (2014).

    Article  Google Scholar 

  5. M. A. Steiner, J. F. Geisz, I. García, D. J. Friedman, A. Duda, and S. R. Kurtz, J. Appl. Phys. 113, 123109 (2013).

    Article  Google Scholar 

  6. D. Liang, Y. Kang, Y. Huo, Y. Chen, Y. Cui, and J.S. Harris, Nano Letters 13, 4850 (2013).

    Article  CAS  Google Scholar 

  7. S. Fafard and D. P. Masson, US Patent Appl. 61913675 (2013).

  8. D.P. Masson, F. Proulx, and S. Fafard, Progress in Photovoltaic, October 2015.

  9. C.E. Valdivia, M.M. Wilkins, B. Boussairi, A. Jaouad, V. Aimez, R. Arès, D.P. Masson, S. Fafard, and K. Hinzer, SPIE OPTO, p. 93580E, International Society for Optics and Photonics (2015).

  10. E. Oliva, F. Dimroth, A.W. Bett, Progress in Photovoltaics: Research and Applications 16, 289 (2008).

    Article  CAS  Google Scholar 

  11. V. Andreev et al. Proc. 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 761–763 (2003).

  12. S. Takagi, R. Zhang, J. Suh, S.H. Kim, M. Yokoyama, K. Nishi, M. Takenaka, Jap. J. Appl. Phys. 54, 06FA01 (2015).

    Article  Google Scholar 

  13. S. Fafard et al submitted (2015).

  14. M.P. Lumb et al. J. Appl. Phys. 116, 194504 (2014).

    Article  Google Scholar 

  15. Sotooddeh et al, J. Appl. Phys. 87, 2890 (2000).

    Article  Google Scholar 

  16. S.C. Jain, D.J. Roulston, Solid-State Electron. 34, 453 (1991).

    Article  CAS  Google Scholar 

  17. M.E. Kalusmeier-Brown, M.S. Lundstrom, M.R. Melloch IEEE Trans. Electron Devices 36.10, 2146 (1989).

    Article  Google Scholar 

  18. A. Walker, O. Höhn, D. Micha, L. Wagner, H. Helmers, A. Bett, and F. Dimroth, SPIE OPTO (International Society for Optics and Photonics, 2015) pp. 93580A – 93580A.

  19. M. Razeghi, “The MOCVD Challenge: A survey of GaInAsP-InP and GaInAsP-GaAs for photonic and electronic device applications”, Second Edition, Electronic materials and devices series (CRC Press, 2010).

  20. Wilkins, M., Valdivia, C. E., Gabr, A. M., Masson, D., Fafard, S., & Hinzer, K. Journal of Applied Physics, 118(14), 143102 (2015).

    Article  Google Scholar 

  21. York et al., Photonics West 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Fafard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

York, M.C.A., Proulx, F., Masson, D.P. et al. Thin n/p GaAs Junctions for Novel High-Efficiency Phototransducers Based on a Vertical Epitaxial Heterostructure Architecture. MRS Advances 1, 881–890 (2016). https://doi.org/10.1557/adv.2016.9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.9

Navigation