Skip to main content
Log in

A combinatorial approach to enhance the biocompatibility and heating efficiency of magnetic hyperthermia- Serum Albumin conjugated ferrimagneticmagnetite nanoparticles

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Magnetic hyperthermia is a non-invasive cancer treatment method which is used synergistically with the current cancer treatments. Improved biocompatibility and enhanced heating characteristics are the pressing challenges to be addressed in magnetic hyperthermia. Through a novel combinatorial approach, we have attempted to address both the challenges. Ferrimagneticmagnetite nanoparticles (FMNPs)of size 50 nm were synthesized by thermal decomposition method and were converted to hydrophilic phase by 3-Aminopropyltrimethoxysilane (APTMS). Serum Albumin (SA) from rat was conjugated over the APTMS-FMNPs to convert to biocompatible phase. The preliminary haemolysis experiments show that SA-FMNPs are non-haemolytic (1.2 % haemolysis). It is observed from the magnetic heating experiments that due to better colloidal stability, the Specific Absorption Rate value of the SA-FMNPs are higher (2100 W/g) than the FMNPs without SA (1400 W/g). Thus we report here that SA conjugation over FMNPs (with a high saturation magnetization of 75 emu/g) provides a novel combinatorial approach to enhance both the biocompatibility and the SAR value for magnetic hyperthermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Mamiya, B. Jeyadevan, Scientific Reports 1, 1-7(2011).

    Article  Google Scholar 

  2. R. Siegal, J. Ma, Z. Zou, A. Jemal, CA: ACancer Journal for Clinicians 64, 9–29(2014).

    Google Scholar 

  3. A.J. Guistini, A.A. Petryk, S.M. Cassim, J.A. Tate, I.Baker, P.J.Hookes,NanoLife 17, 17–32 (2010).

    Google Scholar 

  4. T. Kobayashi, Biotechnol J. 6, 1342–1347 (2011).

    Article  CAS  Google Scholar 

  5. H. Yousef, B. al-Ramadi, B. Issa, S. Qadri1, S. Hayek1, H. Hijaze, Nature precedings, (2008).

  6. M. Shinkai, Biosci. Bioeng.100, 1–11(2005).

    Article  Google Scholar 

  7. M. Mitsumori, M. Hiraoka, T. Shibata, Y. Okuno, Y. Nagata, Y. Nishimura, M. Abe, M. Hasegawa, H. Nagae, Hepato Gastroenterology 43,1431–1437(1996).

    CAS  Google Scholar 

  8. A.K. Gupta, M. Gupta, Biomaterials 26, 3995–4021(2005).

    Article  CAS  Google Scholar 

  9. M. Chastellain, A. Petri, A. Gupta, K.V. Rao, H. Hofmann, Adv. Eng. Mater. 6, 235–241(2004).

    Article  CAS  Google Scholar 

  10. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, and R.N. Muller, Chem. Rev. 108, 2064–2110 (2008).

    Article  CAS  Google Scholar 

  11. F. Herranz, J. Ruiz-Cabello, M.P. Morales, A.G. Roca, R. Vilar, Contrast Media Mol.Imaging 3, 215–222(2008).

  12. F. Herranz, C.B. Schmidt-Weber, M.H. Shamji, A. Narkus, J. Ruiz-Cabello, R. Vilar, ContrastMedia Mol.Imaging 7, 435–439 (2012).

    Article  CAS  Google Scholar 

  13. B. Salinas, J. RuizCabello, M.P. Morales, F. Herranz, Nanobiomater. 1, 166–172 (2012).

    CAS  Google Scholar 

  14. C.L. Dennis, etal, Nanotechnology 20, 395103(2009).

    Article  CAS  Google Scholar 

  15. E.L. Verde, etal, AIPAdvances 2, 032120–032142 (2012)

    Article  Google Scholar 

  16. J. Carrey, B. Mehdaoui, M. Respaud, J. Appl. Phys. 109, 083921–083937 (2011).

    Article  Google Scholar 

  17. K.M. Seemann, B. Kuhn, Biomedical Optics Express, 5, 2446–2457 (2014).

    Article  CAS  Google Scholar 

  18. K.M. Seemann, M. Luysberg, Z. Révay, P. Kudejova, B. Sanz, N. Cassinelli, A. Loidl, K. Ilicic, G. Multhoff, T.E. Schmid, Journal of Controlled Release 197, 131–137 (2015).

    Article  CAS  Google Scholar 

  19. Y. Liu, M.J. Welch, Bioconjug.Chem., 23,671–682 (2012).

    Article  CAS  Google Scholar 

  20. Y-H. Deng, C-C. Wang, J-H.Hu, W.L. Yang, S-K.Fu, ColloidsSurf. Physicochem.Eng. Asp. 262, 87–93(2005).

    Article  CAS  Google Scholar 

  21. M. Keshavarz, Z. Ghasemi, Journal of Physical and Theoretical Chemistry 8, 85–95 (2011).

    Google Scholar 

  22. B. Samanta, H. Yan, N.O. Fischer, J. Shi, D. J.Jerry, V.M.Rotelloa, J Mater Chem., 18(11), 1204–1208 (2008).

    Article  CAS  Google Scholar 

  23. J.Xie, K.Chen, J.Huang, S.Lee, J.Wang, J.Gao, X. Li, X.Chen, Biomaterials 31, 3016–3022 (2010).

    Article  CAS  Google Scholar 

  24. V. Kalidasan, X.L. Liu, S.H. Tun, Y. Yang, J. Ding, Nanomicroletters (In Press)

  25. R. A.Gibbs et al, Nature 428, 493–521 (2004).

    Article  CAS  Google Scholar 

  26. J. Hankins, Journal of Infusion Nursing 29, 260–265(2009).

    Article  Google Scholar 

  27. K. Hirayama, S. Akashi, M. Furuya, K. Fukuhara, Biochemicaland BiophysicalResearch Communications 173,639–46 (1990).

    Article  CAS  Google Scholar 

  28. J-HLee, J-TJang, J-SChoi, S.H. Moon, S-HNoh, J-WKim, J-GKim, I-SKim, K. Park, J. Cheon, Nature Nanotechnology 6, 418–422(2011).

    Article  CAS  Google Scholar 

  29. C. Luisetal, Scientific Reports 3, 1–8(2013).

    Google Scholar 

  30. W. Wu, Z. Wu, T. Yu, C. Jiang W.S. Kim, Sci. Technol. Adv. Mater. 16, (2015).

  31. R.Qiao, C. Yang, M. Gao, J. Mater. Chem., 19, 6274–6293 (2009).

    Article  CAS  Google Scholar 

  32. W. Baaziz, B.P. Pichon, S. Fleutot, Y. Liu, C. Lefevre, J-M. Greneche, M. Toumi, T. Mhiri, S. B. Colin, J. Phys. Chem. C 118, 3795–3810 (2014).

    Article  CAS  Google Scholar 

  33. P. Guardia, A. Labarta, X. Batlle, J. Phys. Chem. C 115, 390 (2010).

    Article  Google Scholar 

  34. R. Hufschmid, H. Arami, R. M. Ferguson, M. Gonzales, E. Teeman, L. N. Brush, N.D. Browning, K.M. Krishnan, Nanoscale 7, 11142–11154 (2015).

    Article  CAS  Google Scholar 

  35. C.L. Priya, G. Kumar, L. Karthik, and K.V.B. Rao, Journal of Agricultural Technology 8, 143–156 (2012).

    CAS  Google Scholar 

  36. M. Nakaya, R. Nishida, A. Muramatsu,Molecules19, 11395–11403 (2014).

    Article  Google Scholar 

  37. D. Ling, N.Lee, T. Hyeon, Acc.Chem.Res. 48, 1276–1285(2015).

    Article  CAS  Google Scholar 

  38. A. Hu, A. Apblett, Lecture Notes in Nanoscale Science and Technology 22, (2014).

  39. G.K. Kouassi and J. Irudayaraj, Anal. Chem. 78, 3234–3241 (2006).

    Article  CAS  Google Scholar 

  40. M.L. Etheridge, K.R. Hurley, J. Zhang, S. Jeon, H.L. Ring, C. Hogan, C.L. Haynes, M. Garwood, J.C. Bischof, Technology (Singap World Sci) 2, 214–228(2014).

  41. M-B. Carlosetal, Scientific Reports 3, (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalidasan, V., Liu, X., Ding, J. et al. A combinatorial approach to enhance the biocompatibility and heating efficiency of magnetic hyperthermia- Serum Albumin conjugated ferrimagneticmagnetite nanoparticles. MRS Advances 1, 247–254 (2016). https://doi.org/10.1557/adv.2016.28

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.28

Navigation