Skip to main content
Log in

Application of AFM to the Nanomechanics of Cancer

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Cancer cell metastasis is a leading cause of mortality whereby cancer cells migrate from a tumor and spread to distant sites in the body. Understanding metastasis requires a deeper understanding of biomechanics and mechanobiology at the cellular level. We have established the use of Atomic Force Microscopy to infer the mechanical properties of single cells in cultures by measurement of their Young’s modulus. Here we discuss the main advantages, challenges, technological limitations and applicability of AFM based cell mechanics studies along with other emerging high throughput techniques for the development of single cell mechanical based clinical assays for cancer detection and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Fritsch, M. Hockel, T. Kiessling, K. D. Nnetu, F. Wetzel, M. Zink, and J. A. Kas, “Are biomechanical changes necessary for tumour progression?,” Nature Physics, vol. 6, pp. 730–732, Oct 2010.

    Article  CAS  Google Scholar 

  2. S. Suresh, “Biomechanics and biophysics of cancer cells,” Acta Biomater, vol. 3, pp. 413–38, Jul 2007.

    Article  Google Scholar 

  3. M. M. Yallapu, K. S. Katti, D. R. Katti, S. R. Mishra, S. Khan, M. Jaggi, and S. C. Chauhan, “The roles of cellular nanomechanics in cancer,” Med Res Rev, vol. 35, pp. 198–223, Jan 2015.

    Article  CAS  Google Scholar 

  4. S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nature Nanotechnology, vol. 2, pp. 780–783, Dec 2007.

    Article  CAS  Google Scholar 

  5. Q. S. Li, G. Y. H. Lee, C. N. Ong, and C. T. Lim, “AFM indentation study of breast cancer cells,” Biochemical and Biophysical Research Communications, vol. 374, pp. 609–613, Oct 3 2008.

    Article  CAS  Google Scholar 

  6. E. A. Corbin, F. Kong, C. T. Lim, W. P. King, and R. Bashir, “Biophysical properties of human breast cancer cells measured using silicon MEMS resonators and atomic force microscopy,” Lab on a Chip, vol. 15, pp. 839–847, 2015.

    Article  CAS  Google Scholar 

  7. H. W. Hou, Q. S. Li, G. Y. H. Lee, A. P. Kumar, C. N. Ong, and C. T. Lim, “Deformability study of breast cancer cells using microfluidics,” Biomedical Microdevices, vol. 11, pp. 557–564, Jun 2009.

    Article  CAS  Google Scholar 

  8. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophysical Journal, vol. 88, pp. 3689–3698, May 2005.

    Article  CAS  Google Scholar 

  9. M. Plodinec, M. Loparic, C. A. Monnier, E. C. Obermann, R. Zanetti-Dallenbach, P. Oertle, J. T. Hyotyla, U. Aebi, M. Bentires-Alj, R. Y. H. Lim, and C. A. Schoenenberger, “The nanomechanical signature of breast cancer,” Nature Nanotechnology, vol. 7, pp. 757–765, Nov 2012.

    Article  CAS  Google Scholar 

  10. M. Lekka, D. Gil, K. Pogoda, J. Dulinska-Litewka, R. Jach, J. Gostek, O. Klymenko, S. Prauzner-Bechcicki, Z. Stachura, J. Wiltowska-Zuber, K. Okon, and P. Laidler, “Cancer cell detection in tissue sections using AFM,” Archives of Biochemistry and Biophysics, vol. 518, pp. 151–156, Feb 15 2012.

    Article  CAS  Google Scholar 

  11. M. Lekka, K. Pogoda, J. Gostek, O. Klymenko, S. Prauzner-Bechcicki, J. Wiltowska-Zuber, J. Jaczewska, J. Lekki, and Z. Stachura, “Cancer cell recognition - Mechanical phenotype,” Micron, vol. 43, pp. 1259–1266, Dec 2012.

    Article  Google Scholar 

  12. A. Samani and D. Plewes, “A method to measure the hyperelastic parameters of ex vivo breast tissue samples,” Physics in Medicine and Biology, vol. 49, pp. 4395–4405, Sep 21 2004.

    Article  Google Scholar 

  13. M. Lekka, P. Laidler, D. Gil, J. Lekki, Z. Stachura, and A. Z. Hrynkiewicz, “Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy,” European Biophysics Journal with Biophysics Letters, vol. 28, pp. 312–316, 1999.

    Article  CAS  Google Scholar 

  14. E. Canetta, A. Riches, E. Borger, S. Herrington, K. Dholakia, and A. K. Adya, “Discrimination of bladder cancer cells from normal urothelial cells with high specificity and sensitivity: Combined application of atomic force microscopy and modulated Raman spectroscopy,” Acta Biomaterialia, vol. 10, pp. 2043–2055, May 2014.

    Article  CAS  Google Scholar 

  15. E. Shojaei-Baghini, Y. Zheng, M. A. S. Jewett, W. B. Geddie, and Y. Sun, “Mechanical characterization of benign and malignant urothelial cells from voided urine,” Applied Physics Letters, vol. 102, Mar 25 2013.

  16. S. Sharma, C. Santiskulvong, L. A. Bentolila, J. Y. Rao, O. Dorigo, and J. K. Gimzewski, “Correlative nanomechanical profiling with super-resolution F-actin imaging reveals novel insights into mechanisms of cisplatin resistance in ovarian cancer cells,” Nanomedicine-Nanotechnology Biology and Medicine, vol. 8, pp. 757–766, Jul 2012.

    Article  CAS  Google Scholar 

  17. W. W. Xu, R. Mezencev, B. Kim, L. J. Wang, J. McDonald, and T. Sulchek, “Cell Stiffness Is a Biomarker of the Metastatic Potential of Ovarian Cancer Cells,” Plos One, vol. 7, Oct 4 2012.

  18. V. Swaminathan, K. Mythreye, E. T. O’Brien, A. Berchuck, G. C. Blobe, and R. Superfine, “Mechanical Stiffness Grades Metastatic Potential in Patient Tumor Cells and in Cancer Cell Lines,” Cancer Research, vol. 71, pp. 5075–5080, Aug 1 2011.

    Article  CAS  Google Scholar 

  19. Y. X. Ding, Y. Cheng, Q. M. Sun, Y. Y. Zhang, K. You, Y. L. Guo, D. Han, and L. Geng, “Mechanical characterization of cervical squamous carcinoma cells by atomic force microscopy at nanoscale,” Medical Oncology, vol. 32, Mar 2015.

  20. V. Palmieri, D. Lucchetti, A. Maiorana, M. Papi, G. Maulucci, G. Ciasca, M. Svelto, M. De Spirito, and A. Sgambato, “Biomechanical investigation of colorectal cancer cells,” Applied Physics Letters, vol. 105, Sep 22 2014.

  21. L. M. Rebelo, J. S. de Sousa, J. Mendes, and M. Radmacher, “Comparison of the viscoelastic properties of cells from different kidney cancer phenotypes measured with atomic force microscopy,” Nanotechnology, vol. 24, Feb 8 2013.

  22. M. J. Rosenbluth, W. A. Lam, and D. A. Fletcher, “Force microscopy of nonadherent cells: A comparison of leukemia cell deformability,” Biophysical Journal, vol. 90, pp. 2994–3003, Apr 2006.

    Article  CAS  Google Scholar 

  23. Y. H. Tan, T. K. Fung, H. X. Wan, K. Q. Wang, A. Y. H. Leung, and D. Sun, “Biophysical characterization of hematopoietic cells from normal and leukemic sources with distinct primitiveness,” Applied Physics Letters, vol. 99, Aug 22 2011.

  24. Y. Zheng, J. Wen, J. Nguyen, M. A. Cachia, C. Wang, and Y. Sun, “Decreased deformability of lymphocytes in chronic lymphocytic leukemia,” Scientific Reports, vol. 5, Jan 9 2015.

  25. M. Suganuma, A. Takahashi, T. Watanabe, H. Akiyama, Y. Nakajima, A. Mondal, and H. Fujiki, “Abstract 2640A: Cell stiffness as a new indicator of diagnosis for human lung cancer cells and their metastasis,” Cancer Research, vol. 73, p. 2640A, April 15, 2013 2013.

    Google Scholar 

  26. T. Watanabe, H. Kuramochi, A. Takahashi, K. Imai, N. Katsuta, T. Nakayama, H. Fujiki, and M. Suganuma, “Higher cell stiffness indicating lower metastatic potential in B16 melanoma cell variants and in (-)-epigallocatechin gallate-treated cells,” Journal of Cancer Research and Clinical Oncology, vol. 138, pp. 859–866, May 2012.

    Article  CAS  Google Scholar 

  27. G. Weder, M. C. Hendriks-Balk, R. Smajda, D. Rimoldi, M. Liley, H. Heinzelmann, A. Meister, and A. Mariotti, “Increased plasticity of the stiffness of melanoma cells correlates with their acquisition of metastatic properties,” Nanomedicine-Nanotechnology Biology and Medicine, vol. 10, pp. 141–148, Jan 2014.

    Article  CAS  Google Scholar 

  28. D. R. Gossett, H. T. K. Tse, S. A. Lee, Y. Ying, A. G. Lindgren, O. O. Yang, J. Y. Rao, A. T. Clark, and D. Di Carlo, “Hydrodynamic stretching of single cells for large population mechanical phenotyping,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, pp. 7630–7635, May 15 2012.

    Article  CAS  Google Scholar 

  29. H. T. K. Tse, D. R. Gossett, Y. S. Moon, M. Masaeli, M. Sohsman, Y. Ying, K. Mislick, R. P. Adams, J. Y. Rao, and D. Di Carlo, “Quantitative Diagnosis of Malignant Pleural Effusions by Single-Cell Mechanophenotyping,” Science Translational Medicine, vol. 5, Nov 20 2013.

  30. S. E. Cross, Y. S. Jin, J. Tondre, R. Wong, J. Rao, and J. K. Gimzewski, “AFM-based analysis of human metastatic cancer cells,” Nanotechnology, vol. 19, Sep 24 2008.

  31. E. C. Faria, N. Ma, E. Gazi, P. Gardner, M. Brown, N. W. Clarke, and R. D. Snooka, “Measurement of elastic properties of prostate cancer cells using AFM,” Analyst, vol. 133, pp. 1498–1500, 2008.

    Article  CAS  Google Scholar 

  32. C. L. Chen, D. Mahalingam, P. Osmulski, R. R. Jadhav, C. M. Wang, R. J. Leach, T. C. Chang, S. D. Weitman, A. P. Kumar, L. Z. Sun, M. E. Gaczynska, I. M. Thompson, and T. H. M. Huang, “Single-cell analysis of circulating tumor cells identifies cumulative expression patterns of EMT-related genes in metastatic prostate cancer,” Prostate, vol. 73, pp. 813–826, Jun 2013.

    Article  CAS  Google Scholar 

  33. B. M. Ahn, J. Kim, L. Ian, K. H. Rha, and H. J. Kim, “Mechanical Property Characterization of Prostate Cancer Using a Minimally Motorized Indenter in an Ex Vivo Indentation Experiment,” Urology, vol. 76, pp. 1007–1011, Oct 2010.

    Article  Google Scholar 

  34. T. Y. Shin, Y. J. Kim, S. K. Lim, J. Kim, and K. H. Rha, “Robotic Mechanical Localization of Prostate Cancer Correlates with Magnetic Resonance Imaging Scans,” Yonsei Medical Journal, vol. 54, pp. 907–911, Jul 1 2013.

    Article  Google Scholar 

  35. Y. Tan and D. Sun, “Apply Robot-Tweezers Manipulation to Cell Stretching for Biomechanical Characterization,” in Nanorobotics, C. Mavroidis and A. Ferreira, Eds., ed: Springer New York, 2013, pp. 223–239.

  36. M. Lekka and P. Laidler, “Applicability of AFM in cancer detection,” Nature Nanotechnology, vol. 4, pp. 72–72, Feb 2009.

    Article  CAS  Google Scholar 

  37. J. D. Pajerowski, K. N. Dahl, F. L. Zhong, P. J. Sammak, and D. E. Discher, “Physical plasticity of the nucleus in stem cell differentiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, pp. 15619–15624, Oct 2 2007.

    Article  CAS  Google Scholar 

  38. R. M. Hochmuth, “Micropipette aspiration of living cells,” Journal of Biomechanics, vol. 33, pp. 15–22, Jan 2000.

    Article  CAS  Google Scholar 

  39. M. J. Rosenbluth, W. A. Lam, and D. A. Fletcher, “Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry,” Lab on a Chip, vol. 8, pp. 1062–1070, 2008.

    Article  CAS  Google Scholar 

  40. H. Bow, I. V. Pivkin, M. Diez-Silva, S. J. Goldfless, M. Dao, J. C. Niles, S. Suresh, and J. Y. Han, “A microfabricated deformability-based flow cytometer with application to malaria,” Lab on a Chip, vol. 11, pp. 1065–1073, 2011.

    Article  CAS  Google Scholar 

  41. J. Chen, Y. Zheng, Q. Y. Tan, E. Shojaei-Baghini, Y. L. Zhang, J. Li, P. Prasad, L. D. You, X. Y. Wu, and Y. Sun, “Classification of cell types using a microfluidic device for mechanical and electrical measurement on single cells,” Lab on a Chip, vol. 11, pp. 3174–3181, 2011.

    Article  CAS  Google Scholar 

  42. M. Abkarian, M. Faivre, and H. A. Stone, “High-speed microfluidic differential manometer for cellular-scale hydrodynamics,” Proc Natl Acad Sci U S A, vol. 103, pp. 538–42, Jan 17 2006.

    Article  CAS  Google Scholar 

  43. Y. Katsumoto, K. Tatsumi, T. Doi, and K. Nakabe, “Electrical classification of single red blood cell deformability in high-shear microchannel flows,” International Journal of Heat and Fluid Flow, vol. 31, pp. 985–995, 2010.

    Article  Google Scholar 

  44. T. W. Remmerbach, F. Wottawah, J. Dietrich, B. Lincoln, C. Wittekind, and J. Guck, “Oral Cancer Diagnosis by Mechanical Phenotyping,” Cancer Research, vol. 69, pp. 1728–1732, Mar 1 2009.

    Article  CAS  Google Scholar 

  45. A. M. Forsyth, J. D. Wan, W. D. Ristenpart, and H. A. Stone, “The dynamic behavior of chemically “stiffened” red blood cells in microchannel flows,” Microvascular Research, vol. 80, pp. 37–43, Jul 2010.

    Article  CAS  Google Scholar 

  46. D. J. Hoelzle, B. A. Varghese, C. K. Chan, and A. C. Rowat, “A microfluidic technique to probe cell deformability,” J Vis Exp, p. e51474, 2014.

  47. P. Osmulski, D. Mahalingam, M. E. Gaczynska, J. Liu, S. Huang, A. M. Horning, C. M. Wang, I. M. Thompson, T. H. Huang, and C. L. Chen, “Nanomechanical biomarkers of single circulating tumor cells for detection of castration resistant prostate cancer,” Prostate, vol. 74, pp. 1297–307, Sep 2014.

    Article  CAS  Google Scholar 

  48. M. Plodinec, M. Loparic, C. A. Monnier, E. C. Obermann, R. Zanetti-Dallenbach, P. Oertle, J. T. Hyotyla, U. Aebi, M. Bentires-Alj, R. Y. Lim, and C. A. Schoenenberger, “The nanomechanical signature of breast cancer,” Nature Nanotechnology, vol. 7, pp. 757–65, Nov 2012.

    Article  CAS  Google Scholar 

  49. C. Roduit, S. Sekatski, G. Dietler, S. Catsicas, F. Lafont, and S. Kasas, “Stiffness tomography by atomic force microscopy,” Biophys J, vol. 97, pp. 674–7, Jul 22 2009.

    Article  CAS  Google Scholar 

  50. C. Braunsmann, J. Seifert, J. Rheinlaender, and T. E. Schaffer, “High-speed force mapping on living cells with a small cantilever atomic force microscope,” Review of Scientific Instruments, vol. 85, Jul 2014.

  51. A. Slade, B. Pittenger, P. Milani, A. Boudaoud, O. Hamant, P. Kioschis, L. M. Ponce, and M. Hafner, “Investigating cell mechanics with atomic force microscopy,” Microscopy and Analysis, vol. 28, pp. S6–S9, 2014.

    Google Scholar 

  52. B. Pittenger, N. Erina, and C. Su, “Quantitative mechanical property mapping at the nanoscale with PeakForce QNM,” Bruker Application Note #128, 2011.

  53. T. Ushiki, J. Hitomi, T. Umemoto, S. Yamamoto, H. Kanazawa, and M. Shigeno, “Imaging of living cultured cells of an epithelial nature by atomic force microscopy,” Archives of Histology and Cytology, vol. 62, pp. 47–55, Mar 1999.

    Article  CAS  Google Scholar 

  54. B. Ross, H. Motherby, F. Saurenbach, J. Frohn, M. Kube, and A. Bocking, “Atomic force microscopy in effusion cytology,” Analytical and Quantitative Cytology and Histology, vol. 20, pp. 97–104, Apr 1998.

    CAS  Google Scholar 

  55. S. Sharma, C. Santiskulvong, L. A. Bentolila, J. Rao, O. Dorigo, and J. K. Gimzewski, “Correlative nanomechanical profiling with super-resolution F-actin imaging reveals novel insights into mechanisms of cisplatin resistance in ovarian cancer cells,” Nanomedicine, vol. 8, pp. 757–66, Jul 2012.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Gimzewski, J.K. Application of AFM to the Nanomechanics of Cancer. MRS Advances 1, 1817–1827 (2016). https://doi.org/10.1557/adv.2016.255

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.255

Navigation