Skip to main content
Log in

Quantitative X-Ray Diffraction From Superlattices

  • Quantitative Analysis of Thin Films
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Conclusion

X-ray structural refinement provides a powerful nondestructive quantitative technique for determining the atomic structure and disorder of superlattices. Structural parameters including the lattice strains, interdiffusion, step disorder, and atomic level disorder can be determined. If combined with transmission or grazing incidence diffraction to determine in-plane lattice constants and low-angle scattering—which is more sensitive to the morphology of the interface over long lateral-length scales—a complete structural determination of the superlattice structure is possible. Computer programs, instruction manuals, and relevant references can be obtained by writing directly to two of the authors (IKS, YB) of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For instance, see various articles in Physics, Fabrication and Applications of Multilayered Structures, edited by P. Dhez and C. Weisbuch (Plenum Press, New York, 1988); Metallic Superlattices, Artificially Structured Materials, edited by T. Shinjo and T. Takada (Elsevier, Amsterdam, 1987).

    Google Scholar 

  2. S.S.P. Parkin, Phys. Rev. Lett. 67 (1991) p. 3598.

    Article  CAS  Google Scholar 

  3. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61 (1988) p. 2472.

    Article  CAS  Google Scholar 

  4. B.N. Engel, C.D. England, R.A. Van Leeubuen, M.H. Wiedmann, and C.F. Falco, Phys. Rev. Lett. 67 (1991) p. 1910.

    Article  CAS  Google Scholar 

  5. I.K. Schuller, J. Guimpel, and Y. Bruynseraede, MRS Bulletin XV (2) (1990) p. 29.

    Article  Google Scholar 

  6. D. Neerinck, K. Temst, M. Baert, E. Osquiguil, C. Van Haesendonck, Y. Bruynseraede, A. Gilabert, and I.K. Schuller, Phys. Rev. Lett. 67 (1991) p. 2577.

    Article  CAS  Google Scholar 

  7. I.K. Schuller, A. Fartash, E.E. Fullerton, and M. Grimsditch, in Thin Films: Stresses and Mechanical Properties III, edited by W.D. Nix, J.C. Bravman, E. Arzt, and L.B. Freund (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA, 1992) p. 499.

  8. E.E. Fullerton, J. Pearson, C.H. Sowers, S.D. Bader, X.-Z. Wu, and S.K. Sinha, to be published.

  9. K. Meyer, I.K. Schuller, and C.M. Falco, J. Appl. Phys. 52 (1981) p. 5803.

    Article  CAS  Google Scholar 

  10. E. Spiller, in Physics, Fabrication and Applications of Multilayered Structures, edited by P. Dhez and C. Weisbuch (Plenum Press, New York, 1988) p. 271.

    Chapter  Google Scholar 

  11. C. Tang, S. Alexander, and R. Bruinsma, Phys. Rev. Lett. 64 (1990) p. 772.

    Article  CAS  Google Scholar 

  12. J.-P. Locquet, D. Neerinck, L. Stockman, Y. Bruynseraede, and I.K. Schuller, Phys. Rev. B 39 (1989) p. 13338.

    Article  CAS  Google Scholar 

  13. E.E. Fullerton, D.M. Kelly, J. Guimpel, I.K. Schuller, and Y. Bruynseraede, Phys. Rev. Lett. 68 (1992) p. 859.

    Article  CAS  Google Scholar 

  14. E.E. Fullerton, M. Grimsditch, and I.K. Schuller, unpublished.

  15. J.H. Underwood and T.W. Barbee, Appl. Opt. 20 (1981) p. 3027.

    Article  CAS  Google Scholar 

  16. B. Vidal and P. Vincent, Appl. Opt. 23 (1984) p. 1794.

    Article  CAS  Google Scholar 

  17. S.K. Sinha, Physica B 173 (1991) p. 25.

    Article  CAS  Google Scholar 

  18. D.E. Savage, J. Kleiner, N. Schimke, Y.H. Phang, T. Jankowski, J. Jacobs, R. Kariotis, and M.G. Lagally, J. Appl. Phys. 69 (1991) p. 1411.

    Article  CAS  Google Scholar 

  19. W. Sevenhans, M. Gijs, Y. Bruynseraede, H. Homma, and I.K. Schuller, Phys. Rev. B 34 (1986) p. 5955.

    Article  CAS  Google Scholar 

  20. J.B. Kortright, J. Appl. Phys. 70 (1991) p. 3620.

    Article  CAS  Google Scholar 

  21. M.K. Sanyal, S.K. Sinha, A. Gibaud, S.K. Satija, C.F. Majkrzak, and H. Homma, in Interface Dynamics and Growth, edited by K.S. Liang, M.P. Anderson, R.F. Bruinsma, and G. Scoles (Mater. Res. Soc. Symp. Proc. 237, Pittsburgh, PA, 1992) p. 393.

  22. D.G. Stearns, J. Appl. Phys. 71 (1992) p. 4286.

    Article  CAS  Google Scholar 

  23. P.F. Miceli in Semiconductor Interfaces, Microstructures, and Devices: Properties and Applications, edited by Z.C. Feng (Adam Hilger IOP Publishing, Bristol, 1992).

    Google Scholar 

  24. P.F. Miceli, C.J. Palmstrom, and K.W. Moyers, to be published.

  25. E.E. Fullerton, I.K. Schuller, H. Vanderstraeten, and Y. Bruynseraede, Phys. Rev. B 45 (1992) p. 9292.

    Article  CAS  Google Scholar 

  26. I.K. Schuller, E.E. Fullerton, H. Vanderstraeten, and Y. Bruynseraede, Structure/Property Relationships for Metal/Metal Interfaces, edited by A.D. Romig, D.E. Fowler, and P.D. Bristowe (Mater. Res. Soc. Symp. Proc. 229, Pittsburgh, PA, 1991) p. 41.

  27. F.J. Lamelas, H.D. He, and R. Clarke, Phys. Rev. B 43 (1991) p. 12296.

    Article  CAS  Google Scholar 

  28. G. Gladyszewski and P. Mikolajczak, Appl. Phys. A 48 (1989) p. 521.

    Article  Google Scholar 

  29. H.M. Rietveld, J. Appl. Cryst. 2 (1969) p. 65.

    Article  CAS  Google Scholar 

  30. D.B. McWhan, in Physics, Fabrication and Applications of Multilayered Structures, edited by P. Dhez and C. Weisbuch (Plenum Press, New York, 1988).

    Google Scholar 

  31. I.K. Schuller, Phys. Rev. Lett. 44 (1980) p. 1597.

    Article  CAS  Google Scholar 

  32. G.A. Prinz, J. Magn. Magn. Mater. 100 (1991) p. 469.

    Article  CAS  Google Scholar 

  33. B.T. Jonker, J.J. Krebs, and G.A. Prinz, Phys. Rev. B 39 (1989) p. 1399.

    Article  CAS  Google Scholar 

  34. Y.U. Idzerda, B.T. Jonker, W.T. Elam, and G.A. Prinz, J. Appl. Phys. 67 (1989) p. 5385.

    Article  Google Scholar 

  35. W.F. Egelhoff Jr., I. Jacob, J.M. Rudd, J.F. Cochran, and B. Heinrich, J. Vac. Sci. Technol. A 8 (1990) p. 1582.

    Article  CAS  Google Scholar 

  36. V. Matijasevic and M.R. Beasley, in Metallic Superlattices, Artificially Structured Materials, edited by T. Shinjo and T. Takada (Elsevier, Amsterdam, 1987) p. 187.

    Google Scholar 

  37. D.H. Lowndes, D.P. Norton, and J.D. Budai, Phys. Rev. Lett. 65 (1990) p. 1160.

    Article  CAS  Google Scholar 

  38. J.-M. Triscone, Ø. Fischer, O. Brunner, L. Antognazza, A.D. Kent, and M.G. Karkut, Phys. Rev. Lett. 64 (1990) p. 804.

    Article  CAS  Google Scholar 

  39. S.J. Pennycook, M.F. Chisholm, D.E. Jenson, D.P. Norton, D.H. Lowndes, R. Feenstra, H.R. Kerchner, and J.O. Thomson, Phys. Rev. Lett. 67 (1991) p. 765.

    Article  CAS  Google Scholar 

  40. E.E. Fullerton, J. Guimpel, O. Nakamura, and I.K. Schuller, Phys. Rev. Lett., in press.

  41. For an early report see, for instance, M.A. Beno, L. Soderholm, D.W. Capone II, D.G. Hinks, J.D. Jorgensen, I.K. Schuller, C.U. Segre, K. Zhang, and J.D. Grace, Appl. Phys. Lett. 51 (1987) p. 57.

    Article  CAS  Google Scholar 

  42. For a review see, for instance, I.K. Schuller and J.D. Jorgensen, MRS Bulletin XIV (2) (1989) p. 27.

    Article  Google Scholar 

  43. J.A. Bain, L.J. Chyung, S. Brennan, and B.M. Clemens, Phys. Rev. B 44 (1991) p. 1184.

    Article  CAS  Google Scholar 

  44. A. Fartash, M. Grimsditch, E.E. Fullerton, and I.K. Schuller, Phys. Rev. B, in press.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fullerton, E.E., Schuller, I.K. & Bruynseraede, Y. Quantitative X-Ray Diffraction From Superlattices. MRS Bulletin 17, 33–38 (1992). https://doi.org/10.1557/S0883769400046935

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/S0883769400046935

Navigation