Skip to main content
Log in

Chemical Composition, Geochemical Alteration, and Radiation Damage Effects in Natural Perovskite

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Preliminary analytical and transmission electron microscopy (AEM and TEM) results for a small suite of natural perovskites are reported in this paper and discussed in relation to previous work. We show that perovskite compositions in Synroc and tailored ceramics plot within the known fields of natural perovskite compositions. AEM analyses and electron diffraction work on selected samples indicate that they are predominantly stoichiometric variants of the cubic perovskite structure. Geochemical alteration was observed in one sample of loparite from Bratthagen, Norway. The primary result of this alteration was leaching of Na from the A-site. Although sufficient alpha-decay dose levels for complete amorphization are not realized in this suite of samples, the available data bracket the beginning of the crystalline-amorphous transformation at doses that are ∼ 2-4 times greater than those of zirconolite of similar age. These results may be due to fundamental differences in the damage annealing rates of perovskite and zirconolite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.E. Ringwood, S.E. Kesson, K.D. Reeve, D.M. Levins, and E.J. Ramm, in Radioactive Waste Forms for the Future, edited by W. Lutze and R.C. Ewing (Elsevier, New York, 1988) p. 233.

  2. A.B. Harker, in Radioactive Waste Forms for the Future, edited by W. Lutze and R.C. Ewing (Elsevier, New York, 1988) p. 335.

  3. G.R. Lumpkin, K.L. Smith, and M.G. Blackford, J. Mater. Res. 6, 2218 (1991).

    Article  CAS  Google Scholar 

  4. K.L. Smith, G.R. Lumpkin, M.G. Blackford, R.A. Day, and K.P. Hart, J. Nucl. Mater. 190, 287 (1992).

    Article  CAS  Google Scholar 

  5. G.R. Lumpkin, K.L. Smith, and M.G. Blackford, J. Nucl. Mater. 224, 31 (1995).

    Article  CAS  Google Scholar 

  6. K.L. Smith, M.G. Blackford, G.R. Lumpkin, K.P. Hart, and B.J. Robinson, in Scientific Basis for Nuclear Waste Management XIX, edited by W.M. Murphy and D.A. Knecht (Mater. Res. Soc. Proc. 412, Pittsburgh, PA, 1996) pp. 313–319.

  7. W.C. Mosley, J. Amer. Ceram. Soc. 54, 475 (1971).

    Article  CAS  Google Scholar 

  8. F.W. Clinard, Jr., D.L. Rohr, and R.B. Roof, Nucl. Instr. Meth. Phys. Res. B1, 581 (1984).

    Article  Google Scholar 

  9. W.J. Weber, J.W. Wald, and Hj. Matzke, J. Nucl. Mater. 138, 196 (1986).

    Article  CAS  Google Scholar 

  10. T.J. White, R.C. Ewing, L.M. Wang, J.S. Forrester, and C. Montross, in Scientific Basis for Nuclear Waste Management XVIII, edited by T. Murakami and R.C. Ewing (Mater. Res. Soc. Proc. 353, Pittsburgh, PA, 1995) pp. 1413–1420.

  11. K.L. Smith, N.J. Zaluzec, and G.R. Lumpkin, J. Nucl. Mater., in press.

  12. G.R. Lumpkin, K.L. Smith, M.G. Blackford, R. Gieré, and C.T. Williams, Micron 25, 581 (1994).

    Article  CAS  Google Scholar 

  13. G.R. Lumpkin, K.L. Smith, and R. Gieré, Micron 28, 57 (1997).

    Article  CAS  Google Scholar 

  14. R.H. Mitchell, in Rare Earth Minerals, edited by A.P. Jones, F.W. Wall, and C.T. Williams (Chapman and Hall, London, 1996) p. 41.

  15. F.J. Ryerson, J. Amer. Ceram. Soc. 67, 75 (1984).

    Article  CAS  Google Scholar 

  16. K.D. Hawkins and T.J. White, Phil. Trans. R. Soc. Lond. A 336, 541 (1991).

    Article  CAS  Google Scholar 

  17. T.J. White, R.L. Segall, J.C. Barry, and J.L. Hutchison, Acta Cryst. B41, 93 (1985).

    Article  CAS  Google Scholar 

  18. G.R. Lumpkin, K.P. Hart, P.J. McGlinn, T.E. Payne, R. Gieré, and C.T. Williams, Radiochim. Acta 66/67, 469 (1994).

    Article  CAS  Google Scholar 

  19. G.R. Lumpkin, K.L. Smith, M.G. Blackford, R. Gieré, and C.T. Williams, in Scientific Basis for Nuclear Waste Management XXI, in press.

  20. E.R. Vance, R.A. Day, Z. Zhang, B.D. Begg, C.J. Ball, and M.G. Blackford, J. Sol. St. Chem. 124, 77 (1996).

    Article  CAS  Google Scholar 

  21. H.W. Nesbitt, G.M. Bancroft, W.S. Fyfe, S.N. Karkhanis, and A. Nishijima, Nature 289, 358 (1981).

    Article  CAS  Google Scholar 

  22. A.N. Mariano, in Geochemistry and Mineralogy of Rare Earth Elements, edited by B.R. Lipin and G.A. McKay (Mineralogical Society of America, Washington, D.C., 1989) p. 309.

  23. G.R. Lumpkin, K.L. Smith, and M.G. Blackford, in Scientific Basis for Nuclear Waste Management XVIII, edited by T. Murakami and R.C. Ewing (Mater. Res. Soc. Proc. 353, Pittsburgh, PA, 1995) pp. 855–862.

Download references

Acknowledgement

We thank the following for providing many of the samples used in this investigation: Sue Kesson (Australian National University), Carl Francis (Harvard University), G. Wappler (Museum of Natural History, Berlin), Bob Middleton (Philadelphia Academy of Natural Sciences), S.V. Stefanovsky and S. Ioudintsev (SIA “Radon”, Moscow). We also thank Mark Blackford for assistance with the experimental k-factor calibrations and maintenance of the TEM laboratory.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lumpkin, G.R., Colella, M., Smith, K.L. et al. Chemical Composition, Geochemical Alteration, and Radiation Damage Effects in Natural Perovskite. MRS Online Proceedings Library 506, 207–214 (1997). https://doi.org/10.1557/PROC-506-207

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-506-207

Navigation