Skip to main content
Log in

Materials Engineering For Polarized Light Emitting Diodes

MRS Online Proceedings Library Aims and scope

Abstract

Electroluminescent devices have been made from organo-soluble derivatives of poly(p-phenylene). Solubility and processibility by the LB-technique is achieved by attaching alkoxy side groups to the backbone-p-phenylene units. These polymers are of the hairy-rod (HR) type. If transferred as monolayers from the air-water-interface, monodomain multilayers with large order parameters of chain orientation are obtained. A 130 nm thick LB-film of poly(2, 5-diisopentoxy-p-phenylene) shows blue photoluminescence at λmax = 3.08 eV (404 nm) with a tail extending to 2 eV. The anisotropy was (l − l) / (l + l) = 0.5. This LB-film between a transparent gold and an evaporated Al-electrode shows polarized light emission at E ≥ 6·107 V cm−1 with λmax = 2.2 eV and an in-plane anisotropy of 0.54. Thin films obtained by spincoating of the same polymer show isotropic electroluminescence between ITO and Al-electrodes with an external quantum efficiency of about 0.03 %. Higher efficiencies up to 4 % were realized optimizing the device architecture and the electrodes. Photocrosslinkable sites are introduced as side groups to the poly(p-phenylene) chain. This allows patterning of the LEDs. General features of the supramolecular architecture and typical defect structures occurring in films of polyconjugated macromolecules are discussed using prototypical polymers as examples. Important effects are chain segregation according to chain length and formation of disclinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. M. Stamm, E. W. Fischer, M. Dettenmaier, P. Convert, Farad. Disc. Chem. Soc. 68, p. 263, (1979)

    Article  Google Scholar 

  2. W. Wang, G. Lieser, G. Wegner, Liq. Cryst. 15, p. 1 (1993)

    Article  Google Scholar 

  3. W. Wang, G. Lieser, G. Wegner, Macromolecules 27, p. 1027, (1994)

    Article  CAS  Google Scholar 

  4. H. Witteler, G. Lieser, G. Wegner, M. Schulze, Macromol. Chem. Rapid Commun. 14, p. 471, (1993)

    Article  CAS  Google Scholar 

  5. G. Wegner, Thin Solid Films 216, p. 105, (1992)

    Article  CAS  Google Scholar 

  6. G. Wegner, Mol. Cryst. Liq. Cryst. 235, p. 1, (1993)

    Article  CAS  Google Scholar 

  7. S. Schwiegk, T.H. Vahlenkamp, Y. Xu, G. Wegner, Macromolecules 25, p. 2513, (1992)

    Article  CAS  Google Scholar 

  8. J. H. Wu, G. Lieser, G. Wegner, Adv. Mater. (1995) in press

    Google Scholar 

  9. M. Rehan, A. D. Schlüter, G. Wegner, J. Feast, Polymer 30, p. 1060, (1989)

    Article  Google Scholar 

  10. T.H. Vahlenkamp, G. Wegner, Macromol. Chem. Phys. 195, p. 1933, (1994)

    Article  CAS  Google Scholar 

  11. V. Cimrova, M. Remmers, D. Neher, G. Wegner, Adv. Mater. (1995) in press

    Google Scholar 

  12. U. Rauscher, H. Bässler, D. D. C. Bradley, M. Hennecke, Phys. Rev. B 42, p. 9830, (1990)

    Article  CAS  Google Scholar 

  13. D. Braun, E. G. J. Staring, R. C. J. E. Demand:, G. L. J. Rikken, Y. A. R. R. Kessener, A. H. J. Venhuizen, Synth. Met. 66, p. 75, (1994)

    Article  CAS  Google Scholar 

  14. A. R. Brown, N. C. Greenham, J. H. Burroughes, D. D. C. Bradley, R. H. Friend, P. L. Burn, A. Kraft, A. B. Holmes, Chem. Phys. Lett. 200, p. 46, (1992)

    Article  CAS  Google Scholar 

  15. H. Yokoyama, Science 256, p. 66, (1992)

    Article  CAS  Google Scholar 

  16. H. F. Wittmann, J. Grüner, R. H. Friend, G. W. C. Spencer, S. C. Moratti, A. B. Holmes, Adv. Mat. 7, p. 541, (1995)

    Article  CAS  Google Scholar 

  17. V. Cimrova, D. Neher, Synth. Meth., in press

  18. T. Tsutsui, N. Takada, S. Saito, E. Ogino, Appl. Phys. Lett. 65, p. 1868, (1994)

    Article  CAS  Google Scholar 

  19. A. Dodabalapur, L. J. Rothberg, T. M. Miller, E. W. Kwock, Appl. Phys. Lett. 64, p. 2486, (1994)

    Article  CAS  Google Scholar 

  20. U. Lemmer, R. Hennig, W. Guss, A. Ochse, J. Pommerehne, R. Sander, A. Greiner, R. F. Mahrt, H. Bässler, J. Fledmann, E. O. Göbel, Appl. Phys. Lett, in press

  21. V. Cimrova, D. Neher, J. Appl. Phys., in press

Download references

Acknowledgments

The authors like to thank Dr. J. Grüner and Prof. R. H. Friend (both University of Cambridge) for their assistance with the fabrication and characterization of multilayer LEDs. This work was supported in part by the EC under Brite-Euram BRE2-CT93-0592.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Wegner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wegner, G., Neher, D., Remmers, M. et al. Materials Engineering For Polarized Light Emitting Diodes. MRS Online Proceedings Library 413, 23–34 (1995). https://doi.org/10.1557/PROC-413-23

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-413-23

Navigation