Skip to main content
Log in

Magnetic Structure of Multilayers from Soft-X-Ray Magnetic Circular Dichroism

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Soft-x-ray magnetic circular dichroism (MCD) is the difference between the absorptivity or reflectivity of left and right circularly polarized soft-x-rays at the magnetically interesting L2,3- edges of 3d transition metals or the M4,5-edges of the 4f rare earth elements. Thanks to its large absorption cross-section and strong MCD effect, this technique has become a powerful new means for probing, in an element- and site-specific manner, the magnetic properties of ultra-thin films and multilayers. Soft-x-ray MCD experiments, recently conducted at the Dragon beamline, are utilized to demonstrate the recent progress in this technique and its applications in the research of magnetic thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Schütz, W. Wagner, W. Wilhelm, P. Kienle, R. Zeller, R. Frahm, and G. Materlik, Phys. Rev. Lett. 58, 737 (1987).

    Article  Google Scholar 

  2. C. T. Chen, F. Sette, Y. Ma, and S. Modesti, Phys. Rev. B 42, 7262 (1990).

    Article  CAS  Google Scholar 

  3. T. Koide, T. Shidara, H. Fukutani, K. Yamaguchi, A. Fujimori, and S. Kimura, Phys. Rev. B 44, 4697 (1991).

    Article  CAS  Google Scholar 

  4. L. H. Tjeng, P. Rudolf, G Meigs, F. Sette, C. T. Chen, and Y. U. Idzerda, S.P.I.E. 1548, 160 (1991); L. H. Tjeng, Y. U. Idzerda, P. Rudolf, F. Sette, and C. T. Chen, J. Magn. Magn. Mater. 109, 288 (1992).

    CAS  Google Scholar 

  5. J. G. Tobin, G. D. Waddill, and D. P. Pappas, Phys. Rev. Lett. 68, 3642 (1992).

    Article  CAS  Google Scholar 

  6. Y. Wu, J. Stöhr, B. D. Hermsmeier, M. G. Samant, and D. Weller, Phys. Rev. Lett. 70, 6947 (1993).

    Google Scholar 

  7. C. T. Chen, Y. U. Idzerda, H.-J. Lin, G. Meigs, A. Chaiken, G. A. Prinz, and G. H. Ho, Phys. Rev. B 48, 642 (1993).

    Article  CAS  Google Scholar 

  8. Y. U. Idzerda, L. H. Tjeng, H.-J. Lin, C. J. Gutierrez, G. Meigs, and C. T. Chen, Phys. Rev. B, 48 (1993) 4144; Surf. Sci. 287/288, 741 (1993).

    Article  CAS  Google Scholar 

  9. M. Tischer, D. Arvanitis, T. Yokoyama, T. Lederer, L. Troger, and K. Baberschke, Surf. Sci. 307–309, 1096 (1994).

    Article  Google Scholar 

  10. W. L. O’Brien and B. P. Tonner, Phys. Rev. B 49, 15370 (1994).

    Article  Google Scholar 

  11. Y. Wu, S. S. P. Parkin, J. Stöhr, M. G. Samant, B. D. Hermsmeier, S. Koranda, D. Dunham, and B. P. Tonner, Appl. Phys. Lett. 63, 3726 (1994).

    Google Scholar 

  12. Y. U. Idzerda, C. T. Chen, S.-F. Cheng, W. Vavra, G. A. Prinz, G. Meigs, H.-J. Lin, and G. H. Ho, Appl. Phys. Lett. 64, 3503 (1994).

    Article  CAS  Google Scholar 

  13. C.-C. Kao, C. T. Chen, E. D. Johnson, J. B. Hastings, H.-J. Lin, G. H. Ho, G. Meigs, J.-M. Brot, S. L. Hulbert, Y. U. Idzerda, and C. Vettier, Phys. Rev. B 50, 9599 (1994).

    Article  CAS  Google Scholar 

  14. C. T. Chen, Nucl. Instrum. Methods Phys. Res. Sec. A 256, 595 (1987); C. T. Chen and F. Sette, Rev. Sci. Instrum. 60, 1616 (1989); C. T. Chen, ibid., 63, 1229 (1992).

    Article  Google Scholar 

  15. F. Sette, C. T. Chen, Y. Ma, S. Modesti, and N. V. Smith, in X-ray Absorption Fine Structure, edited by S. S. Hasnain (Ellis Horwood Publishers, New York, 1991), p. 96; N. V. Smith, C. T. Chen, F. Sette, and L. Matthews, Phys. Rev. B 46, 1023 (1992).

    Google Scholar 

  16. R. H. Victora and L. M. Falicov, Phys. Rev. B 31, 7335 (1985); P. M. Levy, K. Ounadjela, S. Zhang, Y. Wang, C. B. Sommers, and A. Fert, J. Appl. Phys. 67, 5914 (1990); D. Stoeffler, K. Ounadjela, and F. Gautier, J. Magn. Magn. Mater. 93, 386 (1991).

    Article  CAS  Google Scholar 

  17. R. Jungblut, C. Roth, F. U. Hillebrecht, and E. Kisker, J. Appl. Phys. 70, 5923 (1991).

    Article  CAS  Google Scholar 

  18. G. van der Laan and B. T. Thole, Phys. Rev. B 43, 13401 (1991).

    Article  Google Scholar 

  19. J. L. Erskine and E. A. Stern, Phys. Rev. B 12, 5016 (1975); C. T. Chen, N. V. Smith, and F. Sette, ibid., 43, 6785 (1991).

    Article  CAS  Google Scholar 

  20. G. Shirane and W. J. Takei, J. Phys. Soc. Japan 17 Suppl. B III, 35 (1962).

    Google Scholar 

  21. See, for example, S. Chikazumi, Physics of Magnetism. Kreiger, (Boca Raton Publishers, Florida, 1986).

    Google Scholar 

  22. B. T. Thole, P. Carra, F. Sette, and G van der Laan, Phys. Rev. Lett. 68, 1943 (1992).

    Article  CAS  Google Scholar 

  23. P. Carra, B. T. Thole, M. Altarelli, and X. Wang, Phys. Rev. Lett. 70, 694 (1993).

    Article  CAS  Google Scholar 

  24. J. Vogel and M. Sacchi, Phys. Rev. B 49, 3230 (1994); Y. U. Idzerda, C. T. Chen, H.-J. Lin, G. Meigs, G. H. Ho, and C.-C. Kao; Nucl. Instr. Methods in Phys. Res. A 347, 134 (1994).

    Article  CAS  Google Scholar 

  25. G. Y. Guo, H. Ebert, W. M. Temmerman, and P. J. Durham, Metallic Alloy: Experimental and Theoretical Perspectives, edited by J. S. Faulkner (Kluwer Academic Publishers, Dordrecht, 1993); G. Y. Guo, H. Ebert, W. M. Temmerman, and P. J. Durham, Phys. Rev. B, submitted for publication.

    Google Scholar 

  26. R. Wu, D. Wang, and A. J. Freeman, Phys. Rev. Lett. 71, 3581 (1993); R. Wu and A. J. Freeman, ibid. 73, 1994 (1994).

    Article  CAS  Google Scholar 

  27. C. T. Chen, Y. U. Idzerda, H.-J. Lin, N. V. Smith, G. Meigs, E. Chaban, G H. Ho, E. Pellegrin, and F. Sette, Phys. Rev. Lett., submitted for publication.

  28. D. Bonnenberg, K. A. Hempel, and H. P. J. Wijn, Magnetic Properties of 3d. 4d. and 5d Elements. Alloys, and Compounds, edited by K.-H. Hellwege and O. Madelung (Landolt-Bornstein, New Series, Vol. III/19a, Springer-Verlag Publishers, Berlin, 1986), p. 178; and references therein.

    Google Scholar 

  29. P. Söderlind, O. Eriksson, B. Johansson, R. C. Albers, and A. M. Boring, Phys. Rev. B 45, 12911(1992).

    Article  Google Scholar 

  30. The n3d reported in Ref. 25 (Ref. 26) are 6.57 (6.66) for Fe and 7.57 (7.45) for Co. We used their average values, i.e. 6.61 for Fe and 7.51 for Co, in the sum-rule analysis.

  31. The thresholds for the two-step-like function were set to the peak positions of the L3 and L2 white lines. The height of the L3 (L2) step function was set to 2/3 (1/3) of the average intensity of the last 15 eV of the spectra, according to the quantum degeneracy, 2j+l. Each step function was then convoluted with a Voigt function to simulate the intrinsic linewidth and experimental resolution. However, the convolution procedure has negligible effect on the SX-MCD results shown in Table 1. We found that a 1 eV shift in the threshold position causes only an ~5 % change in the deduced orbital and spin moments.

  32. P. Yeh, Optical Waves in Layered Media, (Wiley Publishers, New York, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C.T., Idzerda, Y.U., Kao, C.C. et al. Magnetic Structure of Multilayers from Soft-X-Ray Magnetic Circular Dichroism. MRS Online Proceedings Library 375, 59–70 (1994). https://doi.org/10.1557/PROC-375-59

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-375-59

Navigation