Skip to main content
Log in

Ion-Induced Surface Modification of Alloys

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

In addition to the accumulation of the implanted species, a considerable number of processes can affect the composition of an alloy in the surface region during ion bombardment. Collisions of energetic ions with atoms of the alloy induce local rearrangement of atoms by displacements, replacement sequences and by spontaneous migration and recombination of defects within cascades. Point defects form clusters, voids, dislocation loops and networks. Preferential sputtering of elements changes the composition of the surface. At temperatures sufficient for thermal migration of point defects, radiation-enhanced diffusion promotes alloy component redistribution within and beyond the damage layer. Fluxes of interstitials and vacancies toward the surface and into the interior of the target induces fluxes of alloying elements leading to depth-dependent compositional changes. Moreover, Gibbsian surface segregation may affect the preferential loss of alloy components by sputtering when the kinetics of equilibration of the surface composition becomes competitive with the sputtering rate. Temperature, time, current density and ion energy can be used to influence the individual processes contributing to compositional changes and, thus, produce a rich variety of composition profiles near surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Benenson, E. N. Kaufmann, G. L. Miller and W. W. Scholz, eds., Ion Beam Modifications of Materials (North-Holland, Amsterdam 1981); also see Nucl. Instrum. Methods 182/183, (1981).

    Google Scholar 

  2. B. Biasse, G. Destafanis and J. P. Gailliard, eds., Ion Beam Modifications of Materials (North-Holland, Amsterdam 1983); also see Nucl. Instrum. Methods 209/210 (1983).

    Google Scholar 

  3. J. M. Preece and J. K. Hirvonen, eds., Ion Implantation Metallurgy (TMS-AIME, New York 1980).

    Google Scholar 

  4. N. L. Peterson and S. D. Harkness, eds., Radiation Damage in Metals (American Society for Metals, Metals Park, Ohio 1976).

    Google Scholar 

  5. F. V. Nolfi, Jr., ed., Phase Transformations During Irradiation (Applied Science Publishers, London and New York, 1983).

    Google Scholar 

  6. J. M. Poate, G. Foti and D. C. Jacobson, eds., Surface Modification and Alloying by Laser, Ion and Electron Beams (Plenum Press, New York and London, 1983).

    Google Scholar 

  7. S. T. Picraux and W. J. Choyke, eds., Metastable Materials Formation by Ion Implantation (Elsevier Science Publishing Co., New York 1982).

    Google Scholar 

  8. H. Wiedersich, H. H. Anderson, N. Q. Lam, L. E. Rehn and H. W. Pickering, pp. 261–285 in Ref. 6.

    Book  Google Scholar 

  9. S. T. Picraux and D. M. Follsteadt, in Ref. 6, pp. 287–321.

    Book  Google Scholar 

  10. G. Linker, Nucl. Instrum. Methods 182/183, 501 (1981).

    Article  Google Scholar 

  11. H. Wiedersich in Ref. 4, pp. 157–193.

    Google Scholar 

  12. A. D. Brailsford and R. Bullough, J. Nucl. Mater. 69 & 70, 434 (1978).

    Article  Google Scholar 

  13. K. L. Merkle in Ref. 3, pp. 58–94; M. T. Robinson in Ref. 3, pp. 1-27.

    Google Scholar 

  14. J. A. Davies in Ref. 6, pp. 189–209.

    Book  Google Scholar 

  15. T. J. Black, M. L. Jenkins and M. A. Kirk in: Proc. EMAG 83 (Electron Microscopy and Analysis Group — 1983), Guildford, England, August 1983, in press.

    Google Scholar 

  16. H. Wiedersich in: Advanced Techniques for Characterizing Microstructures, F. W. Wiffen and J. A. Spitznagel, eds. (AIME, New York 1982) pp. 15–30.

    Google Scholar 

  17. H. H. Anderson, Appl. Phys. 18, 131 (1979).

    Article  Google Scholar 

  18. U. Littmark and H. O. Hofer, Nucl. Instrum. Methods 168, 329 (1980).

    Article  CAS  Google Scholar 

  19. P. Sigmund and A. Gras-Marti, Nucl. Instrum. Methods 182/183, 25 (1981).

    Article  Google Scholar 

  20. S. Matteson, B. M. Paine and M.-A. Nicolet, Nucl. Instrum. Methods 182/183, 53 (1981).

    Article  Google Scholar 

  21. P. Sigmund, Appl. Phys. A30, 43 (1983).

    Article  CAS  Google Scholar 

  22. P. G. Shewmon, Diffusion in Solids (McGraw-Hill, New York, 1963).

    Google Scholar 

  23. N. Q. Lam, S. J. Rothman and R. Sizmann, Radiat. Eff. 23, 53 (1974).

    Article  Google Scholar 

  24. R. Sizmann, J. Nucl. Mater, 69/70, 386 (1968).

    Article  Google Scholar 

  25. H. Wiedersich and N. Q. Lam, in Ref. 5, pp. 1–46.

    Google Scholar 

  26. S. J. Rothman, in Ref. 5, pp. 189–211.

    Google Scholar 

  27. W. E. King and R. Benedek, J. Nucl. Mater. 117, 26 (1983).

    Article  CAS  Google Scholar 

  28. M. A. Kirk and T. H. Blewitt, Met. Trans. A9, 1729 (1978); also see J. Nucl. Mater. 108/109, 124 (1982).

    Article  Google Scholar 

  29. R. H. Zee, M. W. Guinan and G. L. Kulcinski, J. Nucl. Mater. 114, 190 (1983).

    Article  CAS  Google Scholar 

  30. R. S. Averback, L. J. Thompson and L. E. Rehn, these proceedings; also see S.-J. Kim, R. S. Averback, P. Baldo and M.-A. Nicolet, submitted to Appl. Phys. Lett.

  31. P. Sigmund in: Sputtering by Particle Bombardment I, R. Behrish, ed., Topics in Applied Physics (Springer, Berlin 1981) pp. 11–71.

    Google Scholar 

  32. G. Falcone and P. Sigmund, Appl. Phys. 25, 307 (1981).

    Article  CAS  Google Scholar 

  33. N. Q. Lam, H. A. Hoff, H. Wiedersich and L. E. Rehn, these proceedings.

  34. H. H. Anderson in: Physics of Ionized Gases (SPIG 1980), M. Matić, ed. (Boris Kidric Institute of Nuclear Science, Beograd, Yugoslavia, 1980) p. 421.

    Google Scholar 

  35. P. Wynblatt and R. C. Ku in: Interfacial Segregation, W. C. Johnson and J. M. Blakely, eds. (American Society for Metals, Metals Park, Ohio 1979) p. 115.

    Google Scholar 

  36. Y. S. Ng, T. T. Tsong and S. B. McLane, Jr., Phys. Rev. Lett. 42, 588 (1979).

    Article  CAS  Google Scholar 

  37. L. E. Rehn, N. Q. Lam and H. Wiedersich, these proceedings.

  38. L. E. Rehn, V. T. Boccio and H. Wiedersich, Surface Sci. 128, 37 (1983).

    CAS  Google Scholar 

  39. H. Wiedersich and N. Q. Lam in Ref. 5, pp. 1–46.

    Google Scholar 

  40. L. E. Rehn and P. R. Okamoto in Ref. 5, pp. 237–290.

    Google Scholar 

  41. D. I. Potter in Ref. 5, pp. 213–245.

    Google Scholar 

  42. C. Allen, P. R. Okamoto and N. J. Zaluzec, to be published.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported by the U.S. Department of Energy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiedersich, H. Ion-Induced Surface Modification of Alloys. MRS Online Proceedings Library 27, 13–24 (1983). https://doi.org/10.1557/PROC-27-13

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-27-13

Navigation