Skip to main content
Log in

Unidirectional solidification of Zn-rich Zn−Cu hypoperitectic alloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Zn-0.7 wt.% Cu-hypoperitectic alloy was prepared in a graphite crucible under a vacuum atmosphere. Unidirectional solidification of the Zn-0.7 wt.% Cu-hypoperitectic alloy was carried out by using a Bridgman-type directional solidification apparatus under two different conditions: (i) with different temperature gradients (G = 3.85–9.95 K/mm) at a constant growth rate (41.63 µm/s) and (ii) with different growth rate ranges (G = 8.33–435.67 µm/s) at a constant temperature gradient (3.85 K/mm). The microstructures of the directionally solidified Zn-0.7 wt.% Cu-hypoperitectic samples were observed to be a cellular structure. From both transverse and longitudinal sections of the samples, cellular spacing (?) and cell-tip radius (R) were measured. The effects of solidification-processing parameters (G and V) on the microstructure parameters (? and R) were obtained by using a linear regression analysis. The present experimental results were also compared with the current theoretical and numerical models and similar previous experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Hunziker, M. Vandyoussefi and W. Kurz: Phase and microstructure selection in peritectic alloys close to the limit of constitutional undercooling. Acta Mater. 46(18), 6325 (1998).

    Article  CAS  Google Scholar 

  2. H.W. Kerr and W. Kurz: Solidification of peritectic alloys. Int. Mater. Rev. 41, 129 (1996).

    Article  CAS  Google Scholar 

  3. R. Trivedi and J.S. Park: Dynamics of microstructure formation in the two-phase region of peritectic systems. J. Cryst. Growth 235, 572 (2002).

    Article  CAS  Google Scholar 

  4. D.H. John St: The peritectic reaction. Acta Metall. 38(4), 631 (1990).

    Article  Google Scholar 

  5. H. Yasuda, N. Notake, K. Tokeida, and I. Ohnaka: Periodic structure during unidirectional solidification for peritectic CdSn alloys. J. Cryst. Growth 210, 637 (2000).

    Article  CAS  Google Scholar 

  6. P. Busse and F. Meissen: Coupled growth of the properitectic and the peritectic -phases in binary titanium aluminides. Scr. Metall. 36, 653 (1997).

    Article  CAS  Google Scholar 

  7. M.C. Flemings: Solidification Processing (McGraw Hill, New York, 1974), p. 3153.

    Google Scholar 

  8. W. Kurz and P.R. Sahm: Solidification of Eutectic Materials (Springer Verlag, Berlin, 1975), p. 140.

    Google Scholar 

  9. T.S. Lo, S. Dobler, M. Plapp, A. Karma, and W. Kurz: Twophase microstructure selection in peritectic solidification: From island banding to coupled growth. Acta Metall. 51, 599 (2003).

    CAS  Google Scholar 

  10. J.D. Hunt: Solidification and Casting of Metals (The Metals Society, London, 1979), p. 3.

    Google Scholar 

  11. W. Kurz and D.J. Fisher: Dendritic growth and limit of stability tip radius and spacing. Acta Metall. 29, 11 (1981).

    Article  CAS  Google Scholar 

  12. R. Trivedi: Interdendritic spacing: Part II. A. Comparison of theory and experiment. Metall. Trans. A 15, 977 (1984).

    Article  Google Scholar 

  13. J.D. Hunt and S.Z. Lu: Numerical modeling/dendritic array growth: Spacing and structure predictions. Metall. Trans. A 27, 611 (1996).

    Article  Google Scholar 

  14. W. Kurz, B. Giovanola, and R. Trivedi: Theory of microstructural development during rapid solidification. Acta Metall. 34, 823 (1986).

    Article  CAS  Google Scholar 

  15. W. Kurz, B. Giovanola, and R. Trivedi: Microsegregation in rapidly solidified Ag-15wt-percent-Cu. J. Cryst. Growth 91, 123 (1988).

    Article  CAS  Google Scholar 

  16. Y. Li, S.C. Ng, D. Ma, and H. Jones: Observation of lamellar eutectic-like structure in A Zn-rich Zn-3.37wtCu peritectic alloy processed by bridgman solidification. Scr. Metall. 39, 7 (1998).

    Article  CAS  Google Scholar 

  17. D. Ma, Y. Li, S.C. Ng, and H. Jones: Unidirectional solidification of Zn rich Zn-2.17 wt. Cu hypo-peritectic alloy. Sci. Technol. Adv. Mater. 2, 127 (2001).

    Article  CAS  Google Scholar 

  18. D.J. Cooksey, D. Monson, M.P. Wilkinson, and A. Hellawell: The freezing of some continuous binary eutectic mixtures. Met. Trans. Soc. AIME 218, 745 (1964).

    Google Scholar 

  19. H. Tunca and R.W. Smith: Variation of dendrite arm spacing in Al-rich Zn-Al off-eutectic alloys. J. Mater. Sci. 23, 111 (1988).

    Article  CAS  Google Scholar 

  20. K.P. Young and D.H. Kirkwood: The dendrite arm spacings of aluminium-copper alloys solidified under steady-state conditions. Metall. Mater. Trans. A 6, 197 (1975).

    Article  CAS  Google Scholar 

  21. R.M. Sharp and A. Hellawell: Solute distributions at-non-planar solid-liquid growth fronts. I: Steady-state conditions. J. Cryst. Growth 6, 253 (1970).

    Article  CAS  Google Scholar 

  22. R.A. Pratt and R.N. Grugel: Microstructural response to controlled accelerations during the directional solidification of Al-6 wt Si alloys. Mater. Charact. 31, 225 (1993).

    Article  CAS  Google Scholar 

  23. R. Alberny, J. Serra, and M. Turpin: Use of covariograms for dendrite arm spacings measurements. Trans. Metall. Soc. AIME 245, 55 (1969).

    Google Scholar 

  24. J.H. Lee, H.C. Kim, C.Y. Jo, S.K. Kim, J.H. Shin, S. Liu, and R. Trivedi: Microstructure evolution in directionally solidified Fe-18Cr stainless steels. Mater. Sci. Eng., A 413414, 306 (2005).

    Article  Google Scholar 

  25. K. Tokieda, H. Yasuda, and I. Ohnaka: Formation of banded structure in PbBi peritectic alloys. Mater. Sci. Eng., A 262, 238 (1999).

    Article  Google Scholar 

  26. J. Lee and J.D. Verhoeven: Peritectic formation in the Ni-Al system. J. Cryst. Growth 144, 353 (1994).

    Article  CAS  Google Scholar 

  27. W. Xu, Y.P. Feng, Y. Li, G.D. Zang, and Z.Y. Li: Rapid solidification behavior of Zn-rich Zn-Ag peritectic alloys. Acta Mater. 50, 183 (2002).

    Article  CAS  Google Scholar 

  28. A.V. Gorbunov: Parameters of melting dendrites in Na-Cl. Acta Metall. 40(3), 513 (1992).

    Article  CAS  Google Scholar 

  29. R. Trivedi and J.T. Mason: The effect of interface attachment kinetics on solidification interface morphologies. Metall. Mater. Trans. A 22, 235 (1991).

    Article  Google Scholar 

  30. K. Chou, G. Zhou, and W. Chen: Fundamentals of Structural Chemistry (World Scientific Publishing Co., Singapore, 1993), p. 373.

    Google Scholar 

  31. D.J. Walker and A.M. Mullis: A mechanism for the equalisation of primary spacing during cellular and dendritic growth. J. Mater. Sci. 36, 865 (2001).

    Article  CAS  Google Scholar 

  32. S. Ganesan, C.L. Chan, and D.R. Poirier: Permeability for flow parallel to primary arms. Mater. Sci. Eng., A 151, 97 (1992).

    Article  Google Scholar 

  33. M.S. Bhat, D.R. Poirier, and J.C. Heinrich: Permeability for cross flow through columnar-dendritic alloys. Metall. Trans. B 26, 1049 (1995).

    Article  Google Scholar 

  34. T.B. Massalski: Binary Alloy Phase Diagram (American Society for Metals, Metals Park, OH, 1986), p. 235.

    Google Scholar 

  35. H.Y. Liu and H. Jones: Solidification microstructure selection and characteristics in the zinc-based Zn-Mg system. Acta Metall. 40(2), 229 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Kaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaya, H., Engin, S., Böyük, U. et al. Unidirectional solidification of Zn-rich Zn−Cu hypoperitectic alloy. Journal of Materials Research 24, 3422–3431 (2009). https://doi.org/10.1557/jmr.2009.0415

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0415

Navigation