Skip to main content
Log in

Nanoindentation of histological specimens: Mapping the elastic properties of soft tissues

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Although alterations in the gross mechanical properties of dynamic and compliant tissues have a major impact on human health and morbidity, there are no well-established techniques to characterize the micromechanical properties of tissues such as blood vessels and lungs. We have used nanoindentation to spatially map the micromechanical properties of 5-μm-thick sections of ferret aorta and vena cava and to relate these mechanical properties to the histological distribution of fluorescent elastic fibers. To decouple the effect of the glass substrate on our analysis of the nanoindentation data, we have used the extended Oliver and Pharr method. The elastic modulus of the aorta decreased progressively from 35 MPa in the adventitial (outermost) layer to 8 MPa at the intimal (innermost) layer. In contrast, the vena cava was relatively stiff, with an elastic modulus >30 MPa in both the extracellular matrix-rich adventitial and intimal regions of the vessel. The central, highly cellularized, medial layer of the vena cava, however, had an invariant elastic modulus of ∼20 MPa. In extracellular matrix-rich regions of the tissue, the elastic modulus, as determined by nanoindentation, was inversely correlated with elastic fiber density. Thus, we show it is possible to distinguish and spatially resolve differences in the micromechanical properties of large arteries and veins, which are related to the tissue microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.P. Glasser, D.K. Arnett, G.E. McVeigh, S.M. Finkelstein, A.J. Bank, D.J. Morgan, and J.N. Cohn: Vascular compliance and cardiovascular disease: A risk factor or a marker?Amer. J. Hyper. 10, 1175 (1997).

    Article  CAS  Google Scholar 

  2. J.D. Escolar, C. Tejero, M.A. Escolar, F. Montalvo, and R. Garisa: Architecture, elastic fiber, and collagen in the distal air portion of the lung of the 18-month-old rat. Anat. Rec. 248, 63 (1997).

    Article  CAS  Google Scholar 

  3. A.J. Bailey: Molecular mechanisms of aging in connective tissues. Mech. Ageing Dev. 122, 735 (2001).

    Article  CAS  Google Scholar 

  4. S. Aoun, J. Blacher, M.E. Safar, and J.J. Mourad: Diabetes mellitus and renal failure: Effects on large artery stiffness. J. Hum. Hyper. 15, 693 (2001).

    Article  CAS  Google Scholar 

  5. P. Boutouyrie, A.I. Tropeano, R. Asmar, I. Gautier, A. Benetos, P. Lacolley, and S. Laurent: Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: A longitudinal study. Hypertension 39, 10 (2002).

    Article  CAS  Google Scholar 

  6. K. Cruickshank, L. Riste, S.G. Anderson, J.S. Wright, and G. Dunn: Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: An integrated index of vascular function?Circulation 106, 2085 (2002).

    Article  Google Scholar 

  7. E. Kimoto, T. Shoji, K. Shinohara, S. Hatsuda, K. Mori, S. Fukumoto, H. Koyama, M. Emoto, Y. Okuno, and Y. Nishizawa: Regional arterial stiffness in patients with type 2 diabetes and chronic kidney disease. J. Am. Soc. Nephrol. 17, 2245 (2006).

    Article  Google Scholar 

  8. E.A. Ashley and J. Niebauer: Cardiology Explained (Remedica, UK, 2003), p. 22.

    Google Scholar 

  9. World Health Organization: The World Health Report 2006—Working Together for Health (WHO, Geneva, Switzerland, 2006). Available at: http://www.who.int/whr/2006/en (Accessed July 27, 2008).

    Google Scholar 

  10. M.A. Cattell, J.C. Anderson, and P.S. Hasleton: Age-related changes in amounts and concentrations of collagen and elastin in normotensive human thoracic aorta. Clin. Chim. Acta. 245, 73 (1996).

    Article  CAS  Google Scholar 

  11. M.J. Sherratt, C. Baldock, J.L. Haston, D.F. Holmes, C.J.P. Jones, C.A. Shuttleworth, T.J. Wess, and C.M. Kielty: Fibrillin microfibrils are stiff reinforcing fibres in compliant tissues. J. Mol. Biol. 332, 183 (2003).

    Article  CAS  Google Scholar 

  12. M.J. Sherratt, J.Y. Bastrilles, J.J. Bowden, R.E.B. Watson, and C.E.M. Griffiths: Age-related deterioration in the mechanical function of human dermal fibrillin microfibrils. Brit. J. Derm. 155, 240 (2006).

    Google Scholar 

  13. J-Y. Rho, M.E. Roy, T.Y. Tsui, and G.M. Pharr: Elastic properties of microstructural components of human bone as measured by nanoindentation. J. Biomed. Mater. Res. A 45, 48 (1999).

    Article  CAS  Google Scholar 

  14. J-Y. Rho, P. Zioupos, J.D. Currey, and G.M. Pharr: Variations in the individual thick lamellar properties within osteons by nanoindentation. Bone 25, 295 (1999).

    Article  CAS  Google Scholar 

  15. J-Y. Rho and G.M. Pharr: Effects of drying on the mechanical properties of bovine femur measured by nanoindentation. J. Mater. Sci. Mater. Med. 10, 485 (1999).

    Article  CAS  Google Scholar 

  16. J-Y. Rho, P. Zioupos, J.D. Currey, and G.M. Pharr: Microstructural elasticity and regional heterogeneity in human femoral bone of various ages examined by nano-indentation. J. Biomech. 35, 189 (2002).

    Article  CAS  Google Scholar 

  17. A.J. Bushby, V.L. Ferguson, and A. Boyde: Nanoindentation of bone: Comparison of specimens tested in liquid and embedded in polymethylmethacrylate. J. Mater. Res. 19, 249 (2004).

    Article  CAS  Google Scholar 

  18. A.K. Bembey, M.L. Oyen, A.J. Bushby, and A. Boyde: Viscoelastic properties of bone as a function of hydration state determined by nanoindentation. Philos. Mag. 86, 5691 (2006).

    Article  CAS  Google Scholar 

  19. M.L. Oyen: Poroelastic nanoindentation responses of hydrated bone. J. Mater. Res. 23, 1307 (2008).

    Article  CAS  Google Scholar 

  20. M.R. VanLandingham, J.S. Villarrubia, W.F. Guthrie, F. William, and G.F. Meyers: Nanoindentation of polymers: An overview. Macromol. Symp. 167, 15 (2001).

    Article  CAS  Google Scholar 

  21. S. Gupta, F. Carrillo, M. Balooch, L. Pruitt, and C. Puttlitz: Simulated soft tissue nanoindentation: A finite element study. J. Mater. Res. 20, 1979 (2005).

    Article  CAS  Google Scholar 

  22. F. Carrillo, S. Gupta, M. Balooch, S.J. Marshall, G.W. Marshall, L. Pruitt, and C.M. Puttlitz: Nanoindentation of polydimethylsilox-ane elastomers: Effect of crosslinking, work of adhesion, and fluid environment on elastic modulus. J. Mater. Res. 20, 2820 (2005).

    Article  CAS  Google Scholar 

  23. D.M. Ebenstein and L.A. Pruitt: Nanoindentation of soft hydrated materials for application to vascular tissues. J. Biomed. Mater. Res. A 69, 222 (2004).

    Article  CAS  Google Scholar 

  24. M.J. Sherratt, T.J. Wess, C. Baldock, J.L. Ashworth, P.P. Purslow, C.A. Shuttleworth, and C.M. Kielty: Fibrillin-rich microfibrils of the extracellular matrix: Ultrastructure and assembly. Micron. 32, 185 (2001).

    Article  CAS  Google Scholar 

  25. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter: Molecular Biology of the Cell, 4th ed. (Garland Publishing, New York, 2002).

    Google Scholar 

  26. T.Y. Tsui and G.M. Pharr: Substrate effects on nanoindentation mechanical property measurement of soft films on hard substrates. J. Mater. Res. 14, 292 (1999).

    Article  CAS  Google Scholar 

  27. N. Schwarzer: Elastic surface deformation due to indenters with arbitrary symmetry of revolution. J. Phys. D: Appl. Phys. 37, 2761 (2004).

    Article  CAS  Google Scholar 

  28. R. Akhtar, M.J. Sherratt, N. Bierwisch, B. Derby, P.M. Mummery, R.E.B. Watson, and N. Schwarzer: Nanoindentation of histologi-cal specimens using an extension of the Oliver and Pharr method, in Mechanical Behavior of Biological Materials and Biomaterials, edited by A.G. Checa, O.O. Popoola, E.D. Rekow, and J. Zhou (Mater. Res. Soc. Symp. Proc. 1097E, Warrendale, PA, 2008), GG01.

    Google Scholar 

  29. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  30. T. Chudoba and K. Herrmann: Methods for the determination of the real tip shape of Vickers and Berkovich indenters. Härtereitechnische Mitteilungen, HTM. 56, 258 (2001).

    Google Scholar 

  31. A. Bolshakov, W.C. Oliver, and G.M. Pharr: An explanation for the shape of nanoindentation unloading curves based on finite element simulation, in Thin Films: Stresses and Mechanical Properties V, edited by S.P. Baker, C.A. Ross, P.H. Townsend, C.A. Volkert, and P. Borgesen (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, PA, 1995), p. 675.

    CAS  Google Scholar 

  32. G.M. Pharr and A. Bolshakov: Understanding nanoindentation unloading curves. J. Mater. Res. 17, 2660 (2002).

    Article  CAS  Google Scholar 

  33. N. Schwarzer and G.M. Pharr: On the evaluation of stresses during nanoindentation with sharp indenters. Thin Solid Films 469–470, 194 (2004).

    Article  CAS  Google Scholar 

  34. N. Schwarzer, T. Chudoba, and G.M. Pharr: On the evaluation of stresses in coated materials during nanoindentation with sharp indenters. Surf. Coat. Technol. 200, 4220 (2006).

    Article  CAS  Google Scholar 

  35. N. Schwarzer, T. Chudoba, and F. Richter: Investigation of ultra thin coatings using nanoindentation. Surf. Coat. Technol. 200, 5566 (2006).

    Article  CAS  Google Scholar 

  36. N. Schwarzer: Analysing nanoindentation unloading curves using Pharr’s concept of the effective indenter shape. Thin Solid Films 494, 168 (2006).

    Article  CAS  Google Scholar 

  37. N. Schwarzer: The extended Hertzian theory and its uses in analyzing indentation experiments. Philos. Mag. 86, 5179 (2006).

    Article  CAS  Google Scholar 

  38. N. Schwarzer: Arbitrary load distribution on a layered half space. ASME J. Triol. 122, 672 (2000).

    Article  Google Scholar 

  39. The Oliver and Pharr method for coatings, software demonstration package. Available at: www.siomec.de/O&PfC-DEMO (Accessed July 28, 2008).

  40. C.S. Jorgensen, D. Knauss, H. Hager, and G.A.D. Briggs: Sonography and quantitative measurements. IEEE Eng. Med. Biol. Mag. 15, 35 (1996).

    Article  Google Scholar 

  41. J. Blomfield and J.F. Farrar: Fluorescence spectra of arterial elastin. Biochem. Biophys. Res. Commun. 28, 346 (1967).

    Article  CAS  Google Scholar 

  42. H.F. de Carvalho and S.R. Taboga: Fluorescence and confocal laser scanning microscopy imaging of elastic fibers in hematoxylin-eosin stained sections. Histochem. Cell Biol. 106, 587 (1996).

    Article  Google Scholar 

  43. S. Deeb, K.H. Nesr, E. Mahdy, M. Badawey, and M. Badei: Autofluorescence of routinely hematoxylin and eosin- stained sections without exogenous markers. Afr. J. Biotechnol. 7, 504 (2008).

    CAS  Google Scholar 

  44. P.B. Snowhill and F.H. Silver: A mechanical model of porcine vascular tissues—Part II: Stress-strain and mechanical properties of juvenile porcine blood vessels. Cardiovasc. Eng. 5, 157 (2005).

    Article  Google Scholar 

  45. J. Gosline, M. Lillie, E. Carrington, P. Guerette, C. Ortlepp, and K. Savage: Elastic proteins: Biological roles and mechanical properties. Philos. Trans. R. Soc. London, Ser. B: Biol. Sci. 357, 121 (2002).

    Article  CAS  Google Scholar 

  46. L. Yang, K.O. van der Werf, B.F.J.M. Koopman, V. Subramaniam, M.L. Bennink, P.J. Dijkstra, and J. Feijen: Micromechanical bending of single collagen fibrils using atomic force microscopy. J. Biomed. Mater. Res. A 82, 160 (2007).

    Article  CAS  Google Scholar 

  47. M.A. Lillie and J.M. Gosline: The effects of hydration on the dynamic mechanical properties of elastin. Biopolymers 29, 1147 (1990).

    Article  CAS  Google Scholar 

  48. R.T. Venkatasubramanian, E.D. Grassl, V.H. Barocas, H. Victor, D. Lafontaine, and J.C. Bischof: Effects of freezing and cryopreservation on the mechanical properties of arteries. Ann. Biomed. Eng. 34, 823 (2006).

    Article  Google Scholar 

  49. M. Adham, J.P. Gournier, J.P. Favre, E. De La Roche, C. Ducerf, J. Baulieux, X. Barral, and M. Pouyet: Mechanical characteristics of fresh and frozen human descending thoracic aorta. J. Surg. Res. 64, 32 (1996).

    Article  CAS  Google Scholar 

  50. E.R. Gozna, A.E. Marble, A.J. Shaw, and D.A. Winter: Mechanical properties of the ascending thoracic aorta of man. Cardiovasc. Res. 7, 261 (1973).

    Article  CAS  Google Scholar 

  51. G.K. Reddy: Age-related cross-linking of collagen is associated with aortic wall matrix stiffness in the pathogenesis of druginduced diabetes in rats. Microvasc. Res. 68, 132 (2004).

    Article  CAS  Google Scholar 

  52. C.J.G. Kelly, A. Speirs, G.W. Gould, J.R. Petrie, H. Lyall, and J.M.C. Connell: Altered vascular function in young women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 87, 742 (2002).

    Article  CAS  Google Scholar 

  53. J.G. Kohl, I.L. Singer, N. Schwarzer, and V.Y. Yu: Effect of bond coat modulus on the durability of silicone duplex coatings. Prog. Org. Coat. 56, 220 (2006).

    Article  CAS  Google Scholar 

  54. M. Herrmann, N. Schwarzer, F. Richter, S. Frühauf, and S.E. Schulz: Determination of Young’s modulus and yield stress of porous low-k materials by nanoindentation. Surf. Coat. Technol. 201, 4305 (2006).

    Article  CAS  Google Scholar 

  55. S. Laurent, X. Girerd, J.J. Mourad, P. Lacolley, L. Beck, P. Boutouyrie, J.P. Mignot, and M. Safar: Elastic modulus of the radial artery wall material is not increased in patients with essential hypertension. Arterioscler Thromb. 14, 1223 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Akhtar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhtar, R., Schwarzer, N., Sherratt, M.J. et al. Nanoindentation of histological specimens: Mapping the elastic properties of soft tissues. Journal of Materials Research 24, 638–646 (2009). https://doi.org/10.1557/jmr.2009.0130

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0130

Navigation