Skip to main content
Log in

Effects of pore morphology on fatigue strength and fracture surface of lotus-type porous copper

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We studied the effect of anisotropic pore morphology on the fatigue behavior and fracture surface of lotus-type porous copper, which was fabricated through unidirectional solidification in pressurized hydrogen and argon atmospheres. The fatigue strength at finite life is closely related to the pore morphology. The fatigue strength decreases with increasing porosity, and the strength depends on applied-stress direction. The fatigue life is the longest in the direction parallel to the longitudinal axis of cylindrical pores. The fatigue strength at finite life is proportional to the ultimate tensile strength and can be expressed by a simple power-law formula. Anisotropic pores affect the fracture surface of lotus copper; crack-initiation site depends on applied-stress direction, and the anisotropic shape pores affect the direction of crack propagation and final fracture surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.F. Ashby, A. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, and H.N.G Wadley: Metal Foams (Butterworth-Heineman Press/Elsevier Science, Burlington, MA, 2000).

    Google Scholar 

  2. J. Banhart: Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 46, 559 (2001).

    Article  CAS  Google Scholar 

  3. M.F. Ashby: The mechanical-properties of cellular solids. Metall. Mater. Trans. A 14, 1755 (1983).

    Article  Google Scholar 

  4. L.J. Gibson and M.F. Ashby: Cellular Solids2nd ed. (Cambridge University Press, U.K., 1997).

    Book  Google Scholar 

  5. H. Nakajima, S.K. Hyun, K. Ohashi, K. Ota, and K. Murakami: Fabrication of porous copper by unidirectional solidification under hydrogen and its properties. Colloids Surf., A 179, 209 (2001).

    Article  CAS  Google Scholar 

  6. H. Nakajima, T. Ikeda, and S.K. Hyun: Fabrication of lotus-type porous metals and their physical properties. Adv. Eng. Mater. 6, 377 (2004).

    Article  CAS  Google Scholar 

  7. S.K. Hyun and H. Nakajima: Anisotropic compressive properties of porous copper produced by unidirectional solidification. Mater. Sci. Eng. A340, 258 (2003).

    Article  Google Scholar 

  8. M. Tane, T. Ichitsubo, S.K. Hyun, and H. Nakajima: Anisotropic yield behavior of lotus-type porous iron: Measurements and micromechanical mean-field analysis. J. Mater. Res. 20, 135 (2005).

    Article  CAS  Google Scholar 

  9. M. Tane, T. Ichitsubo, H. Nakajima, S.K. Hyun, and M. Hirao: Elastic properties of lotus-type porous iron: Acoustic measurement and extended effective-mean-field theory. Acta Mater. 52, 5195 (2004).

    Article  CAS  Google Scholar 

  10. Y. Sugimura, J. Meyer, M.Y. He, H. Bart-Smith, J. Grenstedt, and A.G. Evans: On the mechanical performance of closed cell Al alloy foams. Acta Mater. 45, 5245 (1997).

    Article  CAS  Google Scholar 

  11. J. Zhou and W.O. Soboyejo: Compression-compression fatigue of open cell aluminum foams: macro-/micro- mechanisms and the effects of heat treatment. Mater. Sci. Eng. A369, 23 (2004).

    Article  CAS  Google Scholar 

  12. O.B. Olurin, K.Y.G McCullough, N.A. Fleck, and M.F. Ashby: Fatigue-crack propagation in aluminium alloy foams. Int. J. Fatigue 23, 375 (2001).

    Article  CAS  Google Scholar 

  13. A.M. Harte, N.A. Fleck, and M.F. Ashby: Fatigue failure of an open cell and a closed cell aluminium alloy foam. Acta Mater. 47, 2511 (1999).

    Article  CAS  Google Scholar 

  14. Y. Sugimura, A. Rabiei, A.G. Evans, A.M. Harte, and N.A. Fleck: Compression fatigue of a cellular Al alloy. Mater. Sci. Eng. A269, 38 (1999).

    Article  CAS  Google Scholar 

  15. H. Seki, S. Yamazaki, M. Otsuka, M. Tane, S.K. Hyun, and H. Nakajima: Effect of porosity on fatigue strength of lotus-type porous copper. Mater. Sci. Forum 510, 966 (2006).

    Article  Google Scholar 

  16. S.K. Hyun and H. Nakajima: Effect of solidification velocity on pore morphology of lotus-type porous metals fabricated by unidirectional solidification. Mater. Lett. 57, 3149 (2003).

    Article  CAS  Google Scholar 

  17. T. Ichitsubo, M. Tane, H. Ogi, M. Hirao, T. Ikeda, and H. Nakajima: Anisotropic elastic constants of lotus-type porous copper: Measurements and micromechanics modeling. Acta Mater. 50, 4105 (2002).

    Article  CAS  Google Scholar 

  18. H. Onishi, S.K. Hyun, and H. Nakajima: Measurement of pore length of lotus-type porous nickel, in Porous Metals and Metal Foaming Technology, edited by H. Nakajima and N. Kanetake (The Japan Institute of Metals, Sendai, Japan, 2006), p. 423.

    Google Scholar 

  19. S. Suresh: Fatigue of Materials2nd ed. (Cambridge University Press, UK, 1998).

    Book  Google Scholar 

  20. S.K. Hyun, K. Murakami, and H. Nakajima: Anisotropic mechanical properties of porous copper fabricated by unidirectional solidification. Mater. Sci. Eng. A299, 241 (2001).

    Article  CAS  Google Scholar 

  21. T.L. Gerber and H.O. Fuchs: Analysis of non-propagating cracks in notched parts with compressive mean stress. J. Mater. 3, 359 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seki, H., Tane, M., Otsuka, M. et al. Effects of pore morphology on fatigue strength and fracture surface of lotus-type porous copper. Journal of Materials Research 22, 1331–1338 (2007). https://doi.org/10.1557/jmr.2007.0164

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0164

Navigation