Skip to main content
Log in

Low-temperature transport properties of polycrystalline Ba8Ga16Sn30

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Low-temperature resistivity, Seebeck coefficient, thermal conductivity, and heat-capacity measurements were performed on Ba8Ga16Sn30. This compound crystallizes in a cubic type-VIII clathrate phase, space group \(I\overline{4}3\)m, with the Ba atoms residing inside voids created by a tetrahedrally bonded network of Ga and Sn atoms. Ba8Ga16Sn30 exhibits semiconducting behavior above 150 K with a low thermal conductivity and thus may hold potential for thermoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.A. Slack: New materials and performance limits for thermoelectric cooling. In CRC Handbook of Thermoelectrics, edited by D.M. Rowe (CRC Press, Boca Raton, FL, 1995), p. 407.

    Google Scholar 

  2. G.S. Nolas, G.A. Slack, and S.B. Schujman: Semiconductor clathrates: A phonon-glass electron-crystal material with potential for thermoelectric applications, in Semiconductors and Semimetals, Vol. 69, edited by T.M. Tritt (Academic Press, San Diego, CA, 2000) p. 255, and references therein.

    Article  Google Scholar 

  3. G.S. Nolas, J.L. Cohn, G.A. Slack, and S.B. Schjuman: Semiconducting Ge clathrates: Promising candidates for thermoelectric applications. Appl. Phys. Lett. 73, 178 (1998).

    Article  CAS  Google Scholar 

  4. N.P. Blake, L. Mollnitz, G. Kresse, and H. Metiu: Why clathrates are good thermoelectrics: A theoretical study of Sr8Ga16Ge30. J. Chem. Phys. 111, 3133 (1999).

    Article  Google Scholar 

  5. B. Eisenmann, H. Schafer, and R. Zagler: The compounds A8II B16III B30IV (AII = Sr, Ba, BIII = Al, GA, BIV = Si, Ge, Sn) and their cage structure. J. Less-Common Met. 118, 43 (1986).

    Article  CAS  Google Scholar 

  6. H.G. Schnering, W. Carrillo-Cabrera, R. Kroner, E-M. Petters, K. Peters, and R. Nesper: Crystal structure of the clathrate b-Ba8Ga16Sn30. Z. Kristallogr.–New Cryst. 213, 697 (1998).

    Google Scholar 

  7. E.E. Underwood: Quantitative metallography, in Metallography and Microstructure, Metals Handbook, 9th ed., Vol. 9 (American Society for Metals, Materials Park, OH, 1985), p. 123.

    Google Scholar 

  8. J.D. Bryan, N.P. Blake, H. Metiu, G.D. Stucky, B.B. Iverson, R.D. Poulsen, and A. Bentien: Nonstoichiometry and chemical purity effects in thermoelectric Ba8Ga16Ge30 clathrate. J. Appl. Phys. 92, 7281 (2002).

    Article  CAS  Google Scholar 

  9. V.L. Kuznetsov, L.A. Kuznetsova, A.E. Kaliazin, and D.M. Rowe: Preparation and thermoelectric properties of A8 IIB16 IIIB30 IV clathrate compounds. J. Appl. Phys. 87, 7871 (2000).

    Article  CAS  Google Scholar 

  10. N.W. Ashcroft and N.D. Mermin: Solid State Physics (Holt, Rinehart and Winston, Philadelphia, PA, 1976).

    Google Scholar 

  11. G.L. Guthrie, S.A. Friedberg, and J.E. Goldman: Specific heats of some copper-rich copper-nickel alloys at liquid helium. Temp. Phys. Rev. 113, 45 (1959).

    Article  CAS  Google Scholar 

  12. J. Rayne: Specific heats of metals below one degree absolute. Phys. Rev. 95, 1428 (1954).

    Article  CAS  Google Scholar 

  13. Recent Trends in Thermoelectric Materials Research, Vol. 69–71, edited by T.M. Tritt, in Semiconductors and Semimetals, Treatise Editors: R.K. Willardson and E.R. Weber (Academic Press, New York, 2001).

  14. D.G. Cahill, S.K. Watson, and R.O. Pohl: Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131 (1992).

    Article  CAS  Google Scholar 

  15. J. Callaway: Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046 (1959).

    Article  CAS  Google Scholar 

  16. J. Yang, G.P. Meisner, D.T. Morelli, and C. Uher: Iron valence in skutterudites: Transport and magnetic properties of Co1-xFexSb3. Phys. Rev. B 63, 014410 (2000).

    Article  Google Scholar 

  17. J.L. Cohn, G.S. Nolas, V. Fessatidis, T.H. Metcalf, and G.A. Slack: Glass like heat conduction in high-mobility crystalline semiconductors. Phys. Rev. Lett. 82, 779 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nolas, G.S., Cohn, J.L., Dyck, J.S. et al. Low-temperature transport properties of polycrystalline Ba8Ga16Sn30. Journal of Materials Research 19, 3556–3559 (2004). https://doi.org/10.1557/JMR.2004.0467

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0467

Navigation