Skip to main content
Log in

Polymeric Composites Tailored by Electric Field

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A solid composite of desirable microstructure can be produced by curing a liquid polymeric suspension in an electric field. Redistribution effect of the field-induced forces exceeds that of centrifugation, which is frequently employed to manufacture functionally graded materials. Moreover, unlike centrifugational sedimentation, the current approach can electrically rearrange the inclusions in targeted areas. The electric field can be employed to produce a composite having uniformly oriented structure or only modify the material in selected regions. Field-aided technology enables polymeric composites to be locally micro-tailored for a given application. Moreover, materials of literally any composition can be manipulated. In this article we present testing results for compositions of graphite and ceramic particles as well as glass fibers in epoxy. Electrical and rheological interactions of inclusions in a liquid epoxy are discussed. Measurements of tensile modulus and ultimate strength of epoxy composites having different microstructure of 10 vol% graphite, ceramic particles and glass fiber are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.A. Kaysser and B. Ilschner, FGM research activities in Europe, MRS Bull. 20, 22 (1995).

    Article  CAS  Google Scholar 

  2. B.H. Rabin and R.J. Heaps, Powder processing of Ni-Al2O3 FGM, in Proceedings of the Second International Symposium on Functionally Gradient Materials, San Francisco, CA, Nov. 1-4 (1992).

  3. B.H. Rabin and I. Shiota, Functionally gradient materials, MRS Bull. 20, 14 (1995).

    Article  CAS  Google Scholar 

  4. T. Jungling and B. Kieback, Ceramic/metal functionally gradient materials by sedimentation, in FGM’94 Symposium, Lausanne, October (1994).

  5. J. Lambros, M.H. Santare, H. Li, and G.H. Sapna III, A novel technique for the fabrication of laboratory scale model functionally graded materials. Exp. Mech. 39, 184 (1999).

    CAS  Google Scholar 

  6. N.J. Lee, J. Jang, M. Park, and C.R. Choe, Characterization of functionally gradient epoxy/carbon fiber composite prepared under centrifugal force, J. Mater. Sci. 32, 2013 (1997).

    Article  CAS  Google Scholar 

  7. M. Krumova, C. Klingshirn, F. Haupert, and K. Friedrich, Microhardness studies on functionally graded polymer composites, Comp. Sci. Technol. 61, 557 (2001).

    Article  CAS  Google Scholar 

  8. A.P. Gast and C.F. Zukoski, Electrorheological Fluids as Colloidal Suspensions, Adv. Colloid Interface Sci. 30, 153 (1989).

    Article  CAS  Google Scholar 

  9. T.C. Jordan and M.T. Shaw, Electrorheology, MRS Bull. 16, 38 (1991).

    Article  CAS  Google Scholar 

  10. C.A. Randall, D.V. Miller, J.H. Adair, and A.S. Bhalla, Processing of electroceramic-polymer composites using the electrorheological effect, J. Mater. Res. 8, 899 (1993).

    Article  CAS  Google Scholar 

  11. W.Y. Tam, G.H. Yi, W. Wen, H. Ma, M.M.T. Loy, and P. Sheng, New electrorheological fluid: Theory and experiment, Phys. Rev. Lett. 78, 2987 (1997).

    Article  CAS  Google Scholar 

  12. M.C. Qi and M.T. Shaw, Sedimentation-resistant electrorheological fluids based on PVAL-coated microballoons, J. Appl. Polym. Sci. 65, 539 (1997).

    Article  CAS  Google Scholar 

  13. R.C. Kanu and M.T. Shaw, Enhanced electrorheological fluids using anisotropic particles, J. Rheol. 42, 657 (1998).

    Article  CAS  Google Scholar 

  14. J.E. Martin and R.A. Anderson, Electrostriction in field-structured composites: Basis for a fast artificial muscle? J. Chem. Phys. 111, 4273 (1999).

    CAS  Google Scholar 

  15. L.C. Davis, Model of magnetorheological elastomers, J. Appl. Phys. 85, 3348 (1999).

    Article  CAS  Google Scholar 

  16. B. Liu and M.T. Shaw, Electrorheology of filled silicone elastomers, J. Rheol. 45, 641 (2001).

    Article  CAS  Google Scholar 

  17. Y.M. Shkel and D.J. Klingenberg, A continuum approach to electrorheology, J. Rheol. 43, 1307 (1999).

    Article  CAS  Google Scholar 

  18. G.H. Kim and Y.M. Shkel, Sensing shear strains with electrostriction effect in solid electrorheological composites, J. Intell. Mater. Syst. Str. 13, 479 (2002).

    Article  CAS  Google Scholar 

  19. G.H. Kim, Y.M. Shkel, and R.E. Rowlands, Field-aided microtailoring of polymeric nanocomposites, in Smart Structures and Materials Proc. SPIE, 5051, 442 (2003).

    Article  CAS  Google Scholar 

  20. T.R. Filanc-Bowen, G.H. Kim, and Y.M. Shkel, Novel sensor technology for shear and normal strain detection with generalized electrostriction, Shear in IEEE International Conference on Sensors, 1648 Orlando, FL (2002).

  21. T.R. Filanc-Bowen, G.H. Kim, and Y.M. Shkel, Shear and normal strain sensing with electroactive polymer composites. in Smart Structures and Materials 2003. Proc. SPIE, 5050 (2003).

  22. C.P. Bowen, R.E. Newnham, and C.A. Randall, Dielectric properties of dielectrophoretically assembled particulate-polymer composites, J. Mater. Res. 13, 205 (1998).

    Article  CAS  Google Scholar 

  23. T. Prasse, J. Cavaille, and W. Bauhofer, Electric anisotropy of carbon nanofibre/epoxy resin composites due to electric field induced alignment, Comp. Sci. Technol. 63, 1835 (2003).

    Article  CAS  Google Scholar 

  24. D.A. Norman and R.E. Robertson, Rigid-particle toughening of glassy polymers, Polymer 44, 2351 (2003).

    Article  CAS  Google Scholar 

  25. J.A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

  26. T.B. Jones, J. Dielectrophoretic Force Calculation, Electrostatics 6, 69 (1979).

    Article  Google Scholar 

  27. L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, New York, 1984).

  28. H.A. Pohl, The Motion and Precipitation of Suspensoids in Divergent Electric Fields, J. Appl. Phys. 22, 869 (1951).

    Article  CAS  Google Scholar 

  29. C. Klingshirn, M. Koizumi, F. Haupert, H. Giertzach, and K. Friedrich, Structure and wear of centrifuged epoxy-resin/carbon fiber functionally graded materials, J. Mater. Sci. Lett. 19, 263 (2000).

    Article  CAS  Google Scholar 

  30. P.A. Arp, R.T. Foister, and S.G. Mason, Some electrohydrody-namic effects in fluid dispersions, Adv. Colloid Interface Sci. 12, 295 (1980).

    Article  Google Scholar 

  31. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (with special applications to particulate media) (Prentice-Hall, 1965).

  32. P.J. Rankin, Y.M. Shkel, D.J. Klingenberg, and J.L. Shohet, Probing aspects of nonlinear conduction in electrorheological suspensions, Int. J. Mod. Phys. B 15, 965 (2001).

    Article  CAS  Google Scholar 

  33. L.C. Davis, Polarization forces and conductivity effects in elec-trorheological fluids, J. Appl. Phys. 72, 1334 (1992).

    Article  CAS  Google Scholar 

  34. A. Bezryadin, R.M. Westervelt, and M. Tinkham, Evolution of avalanche conducting states in electrorheological liquids, Phys. Rev. E 59, 6896 (1999).

    Article  CAS  Google Scholar 

  35. V.G. Levich, Physicochemical Hydrodynamics (Prentice-Hall, NJ, 1962).

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Kim, G., Shkel, Y.M. Polymeric Composites Tailored by Electric Field. Journal of Materials Research 19, 1164–1174 (2004). https://doi.org/10.1557/JMR.2004.0151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0151

Navigation