Skip to main content
Log in

Investigation of propagation modes and temperature/velocity variation on unstable combustion synthesis

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Combustion synthesis/micropyretic synthesis is a technique in which material synthesis is accomplished by the propagation of a combustion front across the sample. In some cases, the combustion front may propagate in an unstable mode where the propagation velocity and combustion temperature of the combustion front are altered periodically. In this study, the processing conditions leading to unstable combustion reaction were first studied theoretically. The boundary temperatures separating stable and unstable reactions were then determined. The numerical analysis showed that the combustion temperature and the propagation velocity changed periodically during unstable combustion. As the combustion reaction became unstable, the average propagation velocity and the oscillatory frequency of front propagation decreased. The products of unstable combustion synthesis possessed the banded structures, implying the occurrence of the unstable oscillatory propagation, as demonstrated experimentally. In this study, high activation energy combustion (Ti + 2B reaction) and low activation energy combustion (Ni + Al reaction) were both chosen to illustrate the effect of unstable combustion. It is the first time the experimental and numerical results were combined to investigate the temperature and propagation velocity variations during unstable combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H.P. Li, S.B. Bhaduri, and J.A. Sekhar, Metall. Mater. Trans. A 24A, 251 (1992).

    Article  Google Scholar 

  2. A.G. Merzhanov and B.I. Khaikin, Prog. Energy Combust. Sci. 14, 1 (1988).

    Article  CAS  Google Scholar 

  3. H.P. Li and J.A. Sekhar, J. Mater. Sci. 30, 4628 (1995).

    Article  CAS  Google Scholar 

  4. H.P. Li, Mater. Sci. Eng. A (2003, in press).

  5. V. Subramanian, M.G. Lakshmikantha, and J.A. Sekhar, J. Mater. Res. 10, 1235 (1995).

    Article  CAS  Google Scholar 

  6. Z.A. Munir, Am. Ceram. Bull. 67, 342 (1988).

    CAS  Google Scholar 

  7. H.P. Li and J.A. Sekhar, J. Mater. Res. 10, 2471 (1995).

    Article  CAS  Google Scholar 

  8. H.P. Li and J.A. Sekhar, J. Mater. Res. 8, 2515 (1993).

    Article  CAS  Google Scholar 

  9. Z.A. Munir and U. Anselmi-Tamburini, Mater. Sci. Rep. 3, 277 (1989).

    Article  CAS  Google Scholar 

  10. M.G. Lakshmikantha, A. Bhattacharya, and J.A. Sekhar, Metall. Trans. A 23A, 23 (1992).

    Article  Google Scholar 

  11. M.G. Lakshmikantha and J.A. Sekhar, Metall. Trans. A 24A, 617 (1993).

    Article  CAS  Google Scholar 

  12. M.G. Lakshmikantha and J.A. Sekhar, J. Am. Ceram. Soc. 77, 202 (1994).

    Article  CAS  Google Scholar 

  13. M.G. Lakshmikantha and J.A. Sekhar, J. Mater. Sci. 28, 6403 (1993).

    Article  CAS  Google Scholar 

  14. G.K. Dey, A. Arya, and J.A. Sekhar, J. Mater. Res. 15, 63 (2000).

    Article  CAS  Google Scholar 

  15. M. Fu, S. Penumella, and J.A. Sekhar, J. Mater. Res. 14, 2023 (1999).

    Article  CAS  Google Scholar 

  16. H. Zhang and J.A. Sekhar, J. Mater. Sci. 32, 1815 (1997).

    Article  CAS  Google Scholar 

  17. V.M. Shkiro and G.A. Nersisyan, Combust. Explos. Shock Waves (Engl. Transl.)14, 121 (1978).

    Article  Google Scholar 

  18. Z.A. Munir and N. Sata, Int. J. SHS. 1, 355 (1992).

    CAS  Google Scholar 

  19. Z.A. Munir, Metall. Trans. A 23A, 7 (1992).

    Article  CAS  Google Scholar 

  20. A.V. Dvoryankin, A.G. Strunina, and A.G. Merzhanov, Combust. Explos. Shock Waves (Engl. Transl.)21, 421 (1985).

    Article  Google Scholar 

  21. J.J. Moore and H.J. Feng, Prog. Mater. Sci. 39, 243 (1995).

    Article  CAS  Google Scholar 

  22. K.G. Shkadinskii, B.I. Khaikin, and A.G. Merzhanov, Combust. Explos. Shock Waves 7, 15 (1971).

    Article  Google Scholar 

  23. I. Brain, O. Knacke, and O. Kubaschewski, Thermochemical Properties of Inorganic Substances (Springer-Verlag, New York, 1973).

    Google Scholar 

  24. D.R. Lide, CRC Handbook of Chemist and Physics (CRC, Boca Raton, FL, 1990).

    Google Scholar 

  25. E.A. Brandes and G.B. Brook, Smithells Metals Reference Book(Butterworth-Heinemann, Washington, DC, 1992).

    Google Scholar 

  26. Y.S. Naiborodenko and V.I. Itin, Combust. Explos. Shock Waves, 11, 293 (1975).

    Article  Google Scholar 

  27. T.S. Azatyan, V.M. Mal’tsev, A.G. Merzhanov, and V.A. Seleznev, Fiz. Goreniya Vzryva,16, 37 (1980).

    CAS  Google Scholar 

  28. G.V. Samsonov and I.M. Vinitskii, Handbook of Refractory Compounds (IFI/Plenum, New York, 1980), p. 128.

    Book  Google Scholar 

  29. Annual Book of ASTM Standards (ASTM, Philadelphia, PA, 1989), Vol. 15.02, p. 109.

  30. B.J. Matkowsky and G.I. Sivashinsky, SIAM J. Appl. Math. 35,465 (1978).

    Article  Google Scholar 

  31. J.A. Rodrignes, V.C. Pandolfelli, W.J. Bottaf, R. Tomasi, B. Derby, R. Stevens, and R.J. Brook, J. Mater, Sci. Lett. 10, 819 (1991).

    Article  Google Scholar 

  32. Y.M. Maksimov, A.T. Pak, G.B. Lavrenchuk, Y.S. Naiborodenko, and A.G. Merzhanov, Combust. Explos. Shock Waves 15, 415 (1979).

    Article  Google Scholar 

  33. I.P. Boronvinskaya, A.G. Merzhanov, N.P. Novikov, and A.K. Filonenko, Combust. Explos. Shock Waves 9, 2 (1973).

    Google Scholar 

  34. S.D. Dunmead, D.W. Readey, C.E. Semler, and J.B. Holt, J. Am. Ceram. Soc. 72, 2318 (1989).

    Article  CAS  Google Scholar 

  35. A.A. Zenin, A.G. Merzhanov, and G.A. Nersisyan, Combust. Explos. Shock Waves 17, 63 (1980).

    Article  Google Scholar 

  36. S. Zhang and Z.A. Munir, J. Mater. Sci. 26, 3685 (1991).

    Article  CAS  Google Scholar 

  37. H.P. Li, Int. J. SHS 4, 199 (1995).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H.P. Investigation of propagation modes and temperature/velocity variation on unstable combustion synthesis. Journal of Materials Research 17, 3213–3221 (2002). https://doi.org/10.1557/JMR.2002.0465

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0465

Navigation