Skip to main content
Log in

High-pressure, high-temperature sintering of diamond–SiC composites by ball-milled diamond–Si mixtures

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A new method of sintering diamond-silicon carbide composites is proposed. This method is an alternate to the liquid silicon infiltration technique and is based on simultaneous ball milling of diamond and silicon powder mixtures. Composites with fine-grain diamonds embedded in a diamond–SiC nanocrystalline matrix were sintered from these mixtures. Scanning electron microscopy, x-ray diffraction, and Raman scattering were used to characterize the ball-milled precursors and the sintered composites. It was found that the presence of diamond micron-size particles in the initial powder mixture promotes milling of silicone particles and their transformation into the amorphous state. Mechanical properties of the composites, sintered from mixtures of different ball-milling history at different pressure–temperature conditions, (6 GPa/1400 °C and 8 GPa/2000 °C) were studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.T. Hall, Science 169, 868 (1970).

    Article  CAS  Google Scholar 

  2. G.A. Voronin, in High Pressure Sintering of Diamond and CBN Composite Materials by Infiltration, Proceedings of Joint AIRAPT-16 and HPCJ-38 International Conference on High Pressure Science and Technology, Kyoto, Japan (World Scientific, Singapore, Japan, 1998), p. 467.

    Google Scholar 

  3. S.K. Gordeev, S.G. Zhukov, L.V. Danchukova, and T.C. Ekstrom, Inorg. Mater. 37, 579 (2001).

    Article  CAS  Google Scholar 

  4. Y.S. Ko, T. Tsurumi, O. Fukunaga, and T. Yano, J. Mater. Sci. 36, 469 (2001).

    Article  CAS  Google Scholar 

  5. I.E. Clark and P.A. Bex, Indust. Diamond Rev. 1, 43 (1999).

    Google Scholar 

  6. M.J. Lipp, V.G. Baonza, W.J. Evans, and H.E. Lorenzana, Phys. Rev. B 56, 5978 (1997).

    Article  CAS  Google Scholar 

  7. S. Prawer, K.W. Nugent, D.N. Jamieson, J.O. Orwa, L.A. Bursill, and J.L. Peng, Chem. Phys. Lett. 332, 93 (2000).

    Article  CAS  Google Scholar 

  8. D.M. Gruen, Ann. Rev. Mater. Sci. 29, 211 (1999).

    Article  CAS  Google Scholar 

  9. M. Yoshikawa, Y. Mori, H. Obata, M. Maegawa, G. Katagiri, H. Ishida, and A. Ishitani, Appl. Phys. Lett. 67, 694 (1995).

    Article  CAS  Google Scholar 

  10. A.R. Krauss, O. Auciello, D.M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D.C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M.N. Gardos, H.G. Busmann, E.M. Meyer, and M.Q. Ding, Diamond Relat. Mater. 10, 1952 (2001).

    Article  CAS  Google Scholar 

  11. W. Zhu, G.P. Kochanski, and S. Jin, Science 282, 1471 (1998).

    Article  CAS  Google Scholar 

  12. M. Ohkoshi, T. Akashi, K. Yamada, and A.B. Sawaoka, J. Mater. Proc. Tech. 85, 131 (1999).

    Article  Google Scholar 

  13. E.A. Ekimov, A.G. Gavriliuk, B. Palosz, S. Gierlotka, P. Dluzewski, E. Tatianin, Yu. Kluev, A.M. Naletov, and A. Presz, Appl. Phys. Lett. 77, 954 (2000).

    Article  CAS  Google Scholar 

  14. T.D. Shen, C.C. Koch, T.L. McCormick, R.J. Nemanich, J.Y. Huang, and J.G. Huang, J. Mater. Res. 10, 139 (1995).

    Article  CAS  Google Scholar 

  15. Y. Zhao, D. He, L.L. Daemen, J. Huang, T. Shen, R.B. Schwarz, Y. Zhu, D.L. Bish, J. Zhang, G. Shen, J. Qian, and T.W. Zerda (submitted).

  16. J. Huang, Y.T. Zhu, and H. Mori, J. Mater. Res. 16, 1178 (2001).

    Article  CAS  Google Scholar 

  17. P.N. Tomlinson, N.J. Pipkin, A. Lammer, and R.P. Burnand, Indust. Diamond Rev. 6, 299 (1985).

    Google Scholar 

  18. L.G. Khvostantsev, L.F. Vereshchagin, and A.P. Novikov, High Temp.-High Press. 9, 637 (1977).

    Google Scholar 

  19. L.G. Khvostantsev and A. Verkhniz, High Temp.-High Press. 16, 165 (1984).

    Google Scholar 

  20. R.C. Liebermann and B.S. Li, Rev. Mineralogy 37, 459 (1998).

    CAS  Google Scholar 

  21. G. Morell, R.S. Katiyar, S.Z. Weisz, and I. Balberg, J. Non-Cryst. Solids 194, 78 (1996).

    Article  CAS  Google Scholar 

  22. P. Mishra and K.P. Jain, Phys. Rev. B 62, 14790 (2000).

    Article  CAS  Google Scholar 

  23. H.K. Woo, C.S. Lee, I. Bello, and S.T. Lee, J. Mater. Res. 13, 1738 (1998).

    Article  CAS  Google Scholar 

  24. C. Thomsen and S. Reich, Phys. Rev. Lett. 85, 5214 (2000).

    Article  CAS  Google Scholar 

  25. F. Tuinstra and J.L. Koenig, J. Chem. Phys. 53, 1126 (1970).

    Article  CAS  Google Scholar 

  26. X.Y. Yang, Z.W. Huang, Y.K. Wu, and H.Q. Ye, Mater. Sci. Eng. A 300, 278 (2001).

    Article  Google Scholar 

  27. S.K. Bhaumik, C. Divakar, S.U. Devi, and A.K. Singh, J. Mater. Res. 14, 906 (1999).

    Article  CAS  Google Scholar 

  28. G.A. Voronin, C. Pantea, T.W. Zerda, and K. Ejsmont, J. Appl. Phys. 90, 5933 (2001).

    Article  CAS  Google Scholar 

  29. B. Chambers, J. Phys. Metal. Wiley, New York (1959).

    Google Scholar 

  30. P. Werner, H.J. Gossmann, and D.C. Jacobson, Appl. Phys. Lett. 73, 2465 (1998).

    Article  CAS  Google Scholar 

  31. J. Qian, C. Pantea, G. Voronin, and T.W. Zerda, J. Appl. Phys. 90, 1632 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, J., Voronin, G., Zerda, T.W. et al. High-pressure, high-temperature sintering of diamond–SiC composites by ball-milled diamond–Si mixtures. Journal of Materials Research 17, 2153–2160 (2002). https://doi.org/10.1557/JMR.2002.0317

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0317

Navigation