Skip to main content
Log in

Synthesis and properties of lead zirconate titanate thin films via metalorganic chemical vapor deposition

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ferroelectric PZT thin films were deposited on Pt and SrRuO3 substrates in a cold-wall reactor, using the Pb(C2H5)4/Zr(OBu)4/Ti(OPri)4/O2 reaction system. In comparison with Pt substrate, the growth rate of lead zirconate titanate (PZT) thin film was higher on SrRuO3. Lead content of the thin film deposited on either substrate at low temperatures (723–863 K) was much more temperature dependent than the other two metal contents. The strong temperature dependence originated from the high activation energy in the initial decomposition of Pb(C2H5)4 vapor, which was 54 kcal/mol. The surface reaction constant of lead precursor had much lower temperature dependence. The activation energy of surface reaction for PbO, estimated from deposition in a mini-chamber, was 6 kcal/mol on Pt and 9 kcal/mol on the SrRuO3 substrate. Therefore, the incorporation path of component oxide PbO, whose apparent activation energy was 31 kcal/mol on Pt and 29 kcal/mol on SrRuO3, essentially involved considerable gas-phase reaction. The PZT (50/50) thin film on SrRuO3 bottom electrode possessed a lower coercive field and a smaller remnant polarization than that on Pt. The PZT capacitor on SrRuO3 was also less vulnerable to polarization fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.F. Scott, Ferroelectrics. Rev. 1, 1 (1998).

    CAS  Google Scholar 

  2. J.F. Scott, Ferroelectrics 206–207, 365 (1998).

    Article  Google Scholar 

  3. H.N. Al-Shareef and A.I. Kingon, in Ferroelectric Thin Films: Synthesis and Basic Properties, edited by C.P de Araujo, J.F. Scott, and G.W. Taylor (Gordon and Breach Publishers, Amsterdam, The Netherlands, 1996) p. 193.

    Google Scholar 

  4. A. Gruverman, O. Auciello, and H. Tokumoto, Appl. Phys. Lett. 69, 3191 (1996).

    Article  CAS  Google Scholar 

  5. G.R. Bai, I.F. Tsu, A. Wang, C.M. Foster, C.E. Murray, and V.P. Dravid, Appl. Phys. Lett. 72, 1572 (1998).

    Article  CAS  Google Scholar 

  6. C.M. Foster, R. Csencsits, P.M. Baldo, G.R. Bai, Z. Li, L.E. Rehn, L.A. Wills, R. Hiskes, D. Dimos, and M.B. Sinclair, in Ferroelectric Thin Films IV, edited by S.B. Desu, B.A. Tuttle, R. Ramesh, and T. Shiosaki (Mater. Res. Symp. Proc. 361, Pittsburgh, PA, 1995), p. 307.

    Google Scholar 

  7. R. Ramesh, H. Gilchrist, T. Sands, V.G. Keramidas, R. Haakenaasen, and D.K. Fork, Appl. Phys. Lett. 63, 3592 (1993).

    Article  CAS  Google Scholar 

  8. S. Aggarwal, A.M. Dhote, H. Li, S. Ankem, and R. Ramesh, Appl. Phys. Lett. 74, 230 (1999).

    Article  CAS  Google Scholar 

  9. S. Aggarwal, I.G. Jenkins, B. Nagaraj, C.J. Kerr, C. Canedy, R. Ramesh, G. Velasquez, L. Boyer, and J.T. Evans, Appl. Phys. Lett. 75, 1787 (1999).

    Article  CAS  Google Scholar 

  10. J.W. Hong, W. Jo, D.C. Kim, S.M. Cho, H.J. Nam, H.M. Lee, and J.U. Bu, Appl. Phys. Lett. 75, 3183 (1999).

    Article  CAS  Google Scholar 

  11. W. Jo, D.C. Kim, and J.W. Hong, Appl. Phys. Lett. 76, 390 (2000).

    Article  CAS  Google Scholar 

  12. P. Tiwari, T. Zheleva, and J. Narayan, Appl. Phys. Lett. 63, 30 (1993).

    Article  CAS  Google Scholar 

  13. I. Stolichnov, A. Tagantsev, N. Setter, J.S. Cross, and M. Tsukada, Appl. Phys. Lett. 75, 1790 (1999).

    Article  CAS  Google Scholar 

  14. K.S. Liu, T.F. Tseng, and I.N. Lin, Appl. Phys. Lett. 72, 1182 (1998).

    Article  CAS  Google Scholar 

  15. H. Funakubo, T. Hioki, K. Matsuyama, K. Shinozaki, and N. Mizutani, J. Chem. Vapor Dep. 2, 218 (1994).

    CAS  Google Scholar 

  16. G.J. Norga, L. Fe, D.J. Wouters, and H.E. Maes, Appl. Phys. Lett. 76, 1318 (2000).

    Article  CAS  Google Scholar 

  17. S. Aggarwal, S.R. Perusse, C.J. Kerr, R. Ramesh, D.B. Romero, J.T. Evans, L. Boyer, and G. Velasquez, Appl. Phys. Lett. 76, 918 (2000).

    Article  CAS  Google Scholar 

  18. N. Higashi, N. Okuda, and H. Funakubo, Jpn. J. Appl. Phys. 9, 2780 (2000).

    Article  Google Scholar 

  19. T.Y. Kim, D. Kim, and C.W. Chung, Jpn. J. Appl. Phys. 36, 6494 (1997).

    Article  CAS  Google Scholar 

  20. M. de Keijser and G.J.M. Dormans, MRS Bull. June, 37 (1996).

  21. H. Shapiro and F.W. Frey, The Organic Compounds of Lead (Wiley, New York, 1968), p. 97.

    Google Scholar 

  22. M. Okada, K. Tominaga, T. Araki, S. Katayama, and Y. Sakashita, Jpn. J. Appl. Phys. 29, 718 (1990).

    Article  CAS  Google Scholar 

  23. G.R. Smith and R. Patrick, Int. J. Chem. Kinet. 15, 167 (1983).

    Article  CAS  Google Scholar 

  24. C.B. Eom, R.B. Van Dover, J.M. Phillips, D.J. Werder, J.H. Marshall, C.H. Chen, R.J. Cava, R.M. Fleming, and D.K. Fork, Appl. Phys. Lett. 63, 2570 (1993).

    Article  CAS  Google Scholar 

  25. M. Dawber and J.F. Scott, Appl. Phys. Lett. 76, 1060 (2000).

    Article  CAS  Google Scholar 

  26. H. Fujisawa, S. Nakashima, K. Kaibara, M. Shimizu, and H. Niu, Jpn. J. Appl. Phys. 38, 5392 (1999).

    Article  CAS  Google Scholar 

  27. J. Cross, M. Fujiki, M. Tsukada, K. Matsuura, S. Otani, M. Tomotani, Y. Kataoka, Y. Kotaka, and Y. Goto, Integr. Ferroelectr. 25, 265 (1999).

    Article  Google Scholar 

  28. M. Kobune, O. Matsuura, T. Matsuzaki, A. Mineshige, S. Fujii, H. Fujisawa, M. Shimizu, and H. Niu, Jpn. J. Appl. Phys. 39, 5451 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Yi Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, CY., Chen, YL. & Tsai, DS. Synthesis and properties of lead zirconate titanate thin films via metalorganic chemical vapor deposition. Journal of Materials Research 17, 1536–1542 (2002). https://doi.org/10.1557/JMR.2002.0228

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0228

Navigation