Skip to main content
Log in

Flame-made ceria nanoparticles

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Flame spray pyrolysis (FSP) has been used to synthesize high-surface-area ceria from cerium acetate in acetic acid solution. With the addition of an iso-octane/2-butanol mixture to that solution, homogeneous CeO2 nanoparticles were obtained. The specific surface area of the powders ranged from 240 to 101 m2/g by controlling the oxygen dispersion and liquid precursor flow rates through the flame. Furthermore, for production rates from 2 to 10 g/h a constant average primary particle size could be obtained at selected process parameters. The ceria showed high crystallinity and primary particles with a stepped surface. The powder exhibited good thermal stability and conserved up to 40% of its initial specific surface area when calcinated for 2 h at 900 °C. This shows the potential of FSP made ceria for high-temperature applications as in three-way catalysts or fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Trovarelli, Catal. Rev. Sci. Eng. 38, 439 (1996).

    Article  CAS  Google Scholar 

  2. A. Trovarelli, F. Zamar, J. Llorca, C. deLeitenburg, G. Dolcetti, and J.T. Kiss, J. Catal. 169, 490 (1997).

    Article  CAS  Google Scholar 

  3. B. Djuricic and S. Pickering, J. Eur. Ceram. Soc. 19, 1925 (1999).

    Article  CAS  Google Scholar 

  4. L.A. Bruce, M. Hoang, A.E. Hughes, and T.W. Turney, Appl. Catal., A 134, 351 (1996).

    Article  CAS  Google Scholar 

  5. M. Hirano and M. Inagaki, J. Mater. Chem. 10, 473 (2000).

    Article  CAS  Google Scholar 

  6. Y. Hakuta, S. Onai, H. Terayama, T. Adschiri, and K. Arai, J. Mater. Sci. Lett. 17, 1211 (1998).

    Article  CAS  Google Scholar 

  7. A. Martinez-Arias, M. Fernandez-Garcia, V. Ballesteros, L.N. Salamanca, J.C. Conesa, C. Otero, and J. Soria, Langmuir 15, 4796 (1999).

    Article  CAS  Google Scholar 

  8. T. Masui, K. Fujiwara, Y.M. Peng, T. Sakata, K. Machida, H. Mori, and G. Adachi, J. Alloy. Compd. 269, 116 (1998).

    Article  CAS  Google Scholar 

  9. D. Terribile, A. Trovarelli, J. Llorca, C. deLeitenburg, and G. Dolcetti, J. Catal. 178, 299 (1998).

    Article  CAS  Google Scholar 

  10. V. Perrichon, A. Laachir, S. Abouarnadasse, O. Touret, and G. Blanchard, Appl. Catal., A 129, 69 (1995).

    Article  CAS  Google Scholar 

  11. J. Kaspar, P. Fornasiero, and M. Graziani, Catal. Today 50, 285 (1999).

    Article  CAS  Google Scholar 

  12. S.E. Pratsinis, Prog. Energy Combust. 24, 197 (1998).

    Article  CAS  Google Scholar 

  13. M. ValletRegi, F. Conde, S. Nicolopoulos, C.F. Ragel, and J.M. Gonzalez-Calbet, in Synthesis and Properties of Mechanically Alloyed and Nanocrystalline Materials, Pts 1 and 2— Ismanam-96, Materials Science Forum (Transtec Publications Ltd, Zurich-Uetikon, Switzerland, 1997), Vol. 235–279, pp. 291–296.

    Google Scholar 

  14. M. Suzuki, M. Kagawa, Y. Syono, and T. Hirai, J. Mater. Sci. 27, 679 (1992).

    Article  CAS  Google Scholar 

  15. N. Guillou, L.C. Nistor, H. Fuess, and H. Hahn, Nanostruct. Mater. 8, 545 (1997).

    Article  CAS  Google Scholar 

  16. A. Tscho¨pe and J.Y. Ying, Nanostruct. Mater. 4, 617 (1994).

    Article  Google Scholar 

  17. M. Sokolowski, A. Sokolowska, A. Michalski, and B. Gokieli, J. Aerosol Sci. 8, 219 (1977).

    Article  CAS  Google Scholar 

  18. R.M. Laine, R. Baranwal, T. Hinklin, D. Treadwell, A. Sutorik, C. Bickmore, K. Waldner, and S.S. Neo, Key Eng. Mater. 159, 17 (1999).

    Google Scholar 

  19. R.M. Laine, T. Hinklin, G. Williams, and S.C. Rand, in Metastable, Mechanically Alloyed and Nanocrystalline Materials, Pts 1 and 2, of Materials Science Forum (Trans Tech Publications Ltd, Zurich-Uetikon, Switzerland, 2000), Vol. 343–3, pp. 500–510.

    Google Scholar 

  20. L. Ma¨dler, H.K. Kammler, R. Mueller, and S.E. Pratsinis, J. Aerosol Sci. 33, 369 (2002).

    Article  Google Scholar 

  21. A. Kilian and T.F. Morse, Aerosol Sci. Technol. 34, 227 (2001).

    Article  CAS  Google Scholar 

  22. M. Wolcyrz and L. Kepinski, J. Solid State Chem. 99, 409 (1992).

    Article  CAS  Google Scholar 

  23. R.W. Cheary and A. Coelho, J. Appl. Crystallogr. 25, 109 (1992).

    Article  CAS  Google Scholar 

  24. R.W. Cheary and A.A. Coelho, J. Appl. Crystallogr. 31, 851 (1998).

    Article  CAS  Google Scholar 

  25. A.N. Karpetis and A. Gomez, Combust. Flame 121, 1 (2000).

    Article  CAS  Google Scholar 

  26. E. Gutheil, Modeling of Technical Spray Flames (VDI Verlag, Du¨sseldorf, Germany, 1998).

    Google Scholar 

  27. S.E. Pratsinis, W.H. Zhu, and S. Vemury, Powder Technol. 86, 87 (1996).

    Article  CAS  Google Scholar 

  28. W.J. Stark, S.E. Pratsinis, and A. Baiker, J. Catal. 203, 516 (2001).

    Article  CAS  Google Scholar 

  29. H. Briesen, A. Fuhrmann, and S.E. Pratsinis, Chem. Eng. Sci. 53, 4105 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Mädler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mädler, L., Stark, W.J. & Pratsinis, S.E. Flame-made ceria nanoparticles. Journal of Materials Research 17, 1356–1362 (2002). https://doi.org/10.1557/JMR.2002.0202

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0202

Navigation