Skip to main content
Log in

Metal-oxide films with magnetically-modulated nanoporous architectures

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A magnetically-driven method for controlling nanodimensional porosity in sol-gel-derived metal–oxide films, including TiO2, Al2O3, and SnO2, coated onto ferromagnetic amorphous substrates, such as the magnetically-soft Metglas1 alloys, is described. On the basis of the porous structures observed dependence on external magnetic field, a model is suggested to explain the phenomena. Under well-defined conditions it appears that the sol particles coming out of solution, and undergoing Brownian motion, follow the magnetic field lines oriented perpendicularly to the substrate surface associated with the magnetic domain walls of the substrate; hence the porosity developed during solvent evaporation correlates with the magnetic domain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. The Metglas alloys are a registered trademark of Honeywell Corporation. For product information see: http://www.electronicmaterials.com:80/businesses/sem/amorph/page5_1_2.htm.

  2. K. Kajihara, K. Tanaka, K. Horao, and N. Soga, Jpn. J. Appl. Phys. 36, 5537 (1997).

    CAS  Google Scholar 

  3. B.O. Regan and M. Gratzel, Nature (London) 353, 737 (1991).

    Google Scholar 

  4. K. Sato, A. Tsuzuki, H. Taoda, Y. Torii, T. Kato, and Y. Butsugan, J. Mater. Sci. 29, 5911 (1994).

    Google Scholar 

  5. P.G. Harrison, C. Bailey, and W. Azelee, J. Catal. 186, 147 (1999).

    CAS  Google Scholar 

  6. O.V. Safonova, M.N. Rumyantseva, R.I. Kozlov, M. Labeau, G. Delabouglise, L.I. Ryabova, and A.M. Gaskov, Mater. Sci. Eng., B 77, 159 (2000).

    Google Scholar 

  7. A. Tschöpe and J.Y. Ying, in Nanophase Materials (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994).

    Google Scholar 

  8. C.K. Graatzel, M. Jirousek, and M. Gratzel, J. Mol. Catal. 60, 375 (1990).

    CAS  Google Scholar 

  9. A. Fujishima and K. Honda, Nature (London) 238, 37 (1972).

    CAS  Google Scholar 

  10. T. Dittrich, J. Weidmann, and F. Koch, Appl. Phys. Lett. 75, 3980 (1999).

    CAS  Google Scholar 

  11. D. Pribat and G. Valasco, Sens. Actuators 13, 173 (1988).

    CAS  Google Scholar 

  12. C.A. Grimes, D. Kouzoudis, E.C. Dickey, D. Qian, M.A. Anderson, R. Shahidain, M. Lindsey, and L. Green, J. Appl. Phys. 87, 5341 (2000).

    CAS  Google Scholar 

  13. Y. Ito, Biomaterials 20, 2333 (1999).

    CAS  Google Scholar 

  14. Z. Schwartz, J.Y. Martin, D.D. Dean, J. Simpson, D.L. Cochran, and B.D. Boyan, J. Biomed. Mater. Res. 30(2), 145 (1996).

    CAS  Google Scholar 

  15. B.D. Boyan, T.W. Hummert, D.D. Dean, and Z. Schwartz, Biomaterials 17(2), 137 (1996).

    CAS  Google Scholar 

  16. T.J. Webster, R.W. Siegel, and R. Bizios, Biomaterials 20(13), 1221 (1999).

    CAS  Google Scholar 

  17. N. Ozer and C.M. Lampert, Sol. Energy Mater. Sol. Cells 54(1–4), 147 (1998).

    CAS  Google Scholar 

  18. K. Kajihara, K. Nakanishi, K. Tanaka, K. Hirao, and N. Soga, J. Am. Ceram. Soc. 81(10), 2670 (1998).

    CAS  Google Scholar 

  19. T. Nishikawa, J. Nishida, R. Ookura, S. Nishimura, S. Wada, T. Karino, and M. Shimomura, Mater. Sci. Eng. C 10, 141 (1999).

    Google Scholar 

  20. M. Templin, A. Franck, A. Du Chesne, A. Leist, A. Zhang, R. Ulrich, V. Schadler, and U. Weisner, Science 278, 1795 (1997).

    CAS  Google Scholar 

  21. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Frederickson, B. Chmelka, and G.D. Stucky, Science 279, 548 (1998).

    CAS  Google Scholar 

  22. O.D. Velev, T.A. Jede, R.F. Lobo, and A.M. Lenhoff, Nature 389, 447 (1997).

    CAS  Google Scholar 

  23. B.T. Holland, C.F. Blanford, and A. Stein, Science 281, 538 (1998).

    CAS  Google Scholar 

  24. A. Goossens, E.L. Maloney, and J. Schoonaw, Chemical Vapor Deposition 4, 109 (1998).

    CAS  Google Scholar 

  25. T. Tatsuma, A. Ikezawa, Y. Ohko, T. Miwa, T. Matsue, and A. Fujishima, Adv. Mater. 12(12), 643 (2000).

    CAS  Google Scholar 

  26. A. Imhof and D.J. Pine, Adv. Mater. 10, 697 (1998).

    CAS  Google Scholar 

  27. O. Karthaus, X. Cieren, N. Maruyama, and M. Shimomura, Mater. Sci. Eng. C 10, 103 (1999).

    Google Scholar 

  28. G. Widawski, B. Rawiso, and B. Francois, Nature 369, 3897 (1994).

    Google Scholar 

  29. B. Francois, O. Pitois, and J. Francois, Adv. Mater. 7(12), 1041 (1995).

    CAS  Google Scholar 

  30. S.A. Jenekhe and X.L. Chen, Science 283, 372 (1999).

    CAS  Google Scholar 

  31. R.C. O’Handley, J. Appl. Phys. 62, 35 (1987).

    Google Scholar 

  32. F.E. Luborsky, in Ferromagnetic Materials, edited by E.P. Wohlforth (North-Holland, Amsterdam, The Netherlands, 1980), pp. 451.

  33. K. Suzuki, in Amorphous Metallic Alloys, edited by F.E. Luborsky (Butterworths, London, U.K., 1983), pp. 74.

  34. J. Gutierrez, J.M. Barandiaran, and O.V. Nielsen, Phys. Status Solidi A 111, 279 (1989).

    CAS  Google Scholar 

  35. J.D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1988), p. 191.

    Google Scholar 

  36. M.S. Wong, W.D. Sproul, and S.L. Rohde, Surf. Coat. Technol. 49, 121 (1991).

    Article  CAS  Google Scholar 

  37. R.F. Soohoo, Magnetic Thin Films (Harper & Row, New York, 1965), Chapter 3.

    Google Scholar 

  38. B.D. Cullity, Introduction to Magnetic Materials (Addison-Wesley, Reading, MA, 1972), Chapters 8 and 9.

    Google Scholar 

  39. M. Prutton, Thin Ferromagnetic Films (Butterworths, Washington, DC, 1964), p. 294.

    Google Scholar 

  40. C.J. Brinker and G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing (Academic Press, San Diego, CA, 1990).

    Google Scholar 

  41. E.A. Barringer and K.H. Bowen, Langmuir 1, 414 (1985).

    CAS  Google Scholar 

  42. A. Maraner, C. Beatrice, and P. Mazzetti, J. Appl. Phys. 75, 4117 (1994).

    CAS  Google Scholar 

  43. L.J. Heyderman, J.N. Chapman, M.R.J. Gibbs, and C. Shearwood, Magn. Magn. Mater. 148, 433 (1995).

    CAS  Google Scholar 

  44. B.N. Filippov, G.A. Shmatov, and A.B. Dichenko, Phys. Met. Metallogr. 69, 1 (1990).

    Google Scholar 

  45. S. Szymura, J.J. Wyslocki, M. Yu, and H. Bala, Phys. Status Solidi A 141, 435 (1990).

    Google Scholar 

  46. C.D. Meekison, J.P. Jakubovics, J.M.D. Coey, and J. Ding, J. Magn. Magn. Mater. 104–107, 1161 (1992).

    Google Scholar 

  47. C.W. Turner, Ceram. Bull. 70, 1487 (1991).

    CAS  Google Scholar 

  48. B.P. Nelson and M.A. Anderson, Langmuir 16, 6094 (2000).

    CAS  Google Scholar 

  49. J. Livage, M. Henry, and C. Sanchez, Prog. Solid State Chem. 18, 259 (1988).

    CAS  Google Scholar 

  50. E.A. Barringer and H.K. Bowen, Langmuir 1, 420 (1985).

    CAS  Google Scholar 

  51. G.A. Parks and P.L. De Bruyn, J. Phys. Chem. 66, 967 (1962).

    CAS  Google Scholar 

  52. M. Tschapek, C. Wasowski, and R.M.T. Sanchez, J. Electroanal. Chem. 74, 167 (1976).

    CAS  Google Scholar 

  53. B. Fegley, Jr. and E.A. Barringer, in Better ceramics through chemistry, edited by C.J. Brinker, D.E. Clark, and D.R. Ulrich (Elsevier Science Publishing, New York, 1984), Vol. 32.

  54. D.E. Clark, W.J. Dalzell, and D.C. Foltz, Ceram. Eng. Sci. Proc. 9, 1111 (1988).

    CAS  Google Scholar 

  55. D.U. Krishna Rao and E.C. Subbarao, Ceram. Bull. 58, 467 (1979).

    Google Scholar 

  56. R.J. Hunter, Zeta potential in colloid science (Academic Press, New York, 1981).

    Google Scholar 

  57. C.J. Brinker, A.J. Hurd, P.R. Schunk, G.C. Frye, and C.S. Ashley, J. Non-Cryst. Solids 147, 148, 424 (1992).

    Google Scholar 

  58. R.K. Iler, The chemistry of silica (Wiley, New York, 1979).

    Google Scholar 

  59. A. Glisenti, R. Bertoncello, M. Casarin, D. Marcolin, G. Granozzi, and E. Anglelini, J. Alloys Compd. 226, 213 (1995).

    CAS  Google Scholar 

  60. T.A. Desai, D.J. Hansford, L. Kulinsky, A.H. Nashat, G. Rasi, J. Tu, Y. Wang, M. Zhang, and M. Ferrari, Biomed. Microdevices 2(1), 11 (1999).

    CAS  Google Scholar 

  61. D.S. Ballantine, R.M. White, S.J. Martin, A.J. Ricco, G.C. Frye, E.T. Zellers, and H. Wohltjen, Acoustic Wave Sensors: Theory, Design, and Physicochemical Applications (Academic Press, Boston, MA, 1997).

    Google Scholar 

  62. C.A. Grimes, K.G. Ong, K. Loiselle, P.G. Stoyanov, D. Kouzoudis, Y. Liu, C. Tong, and F. Tefiku, J. Smart Mater. Struct. 8, 639 (2000).

    Google Scholar 

  63. K.G. Ong and C.A. Grimes, J. Smart Mater. Struct. 9, 421 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig A. Grimes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimes, C.A., Singh, R.S., Dickey, E.C. et al. Metal-oxide films with magnetically-modulated nanoporous architectures. Journal of Materials Research 16, 1686–1693 (2001). https://doi.org/10.1557/JMR.2001.0234

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0234

Navigation