Skip to main content
Log in

Cyclic nanoindentation and Raman microspectroscopy study of phase transformations in semiconductors

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This paper supplies new interpretation of nanoindentation data for silicon, germanium, and gallium arsenide based on Raman microanalysis of indentations. For the first time, Raman microspectroscopy analysis of semiconductors within nanoindentations is reported. The given analysis of the load-displacement curves shows that depth-sensing indentation can be used as a tool for identification of pressure-induced phase transformations. Volume change upon reverse phase transformation of metallic phases results either in a pop-out (or a kink-back) or in a slope change (elbow) of the unloading part of the load-displacement curve. Broad and asymmetric hysteresis loops of changing width, as well as changing slope of the elastic part of the loading curve in cyclic indentation can be used for confirmation of a phase transformation during indentation. Metallization pressure can be determined as average contact pressure (Meyer’s hardness) for the yield point on the loading part of the load-displacement curve. The pressure of the reverse transformation of the metallic phase can be measured from pop-out or elbow on the unloading part of the diagram. For materials with phase transformations less pronounced than in Si, replotting of the loaddisplacement curves as average contact pressure versus relative indentation depth is required to determine the transformation pressures and/or improve the accuracy of data interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.R. Clarke, M.C. Kroll, P.D. Kirchner, R.F. Cook, and B.J. Hockey, Phys. Rev. Lett. 60, 2156 (1988).

    Article  CAS  Google Scholar 

  2. Y.G. Gogotsi, A. Kailer, and K.G. Nickel, Materials Research Innovations 1, 3 (1997).

    Article  CAS  Google Scholar 

  3. A. Kailer, Y.G. Gogotsi, and K.G. Nickel, J. Appl. Phys. 81, 3057 (1997).

    Article  CAS  Google Scholar 

  4. G.M. Pharr, W.C. Oliver, and D.S. Harding, J. Mater. Res. 6, 1129 (1991).

    Article  CAS  Google Scholar 

  5. G.M. Pharr, W.C. Oliver, R.F. Cook, P.D. Kirchner, M.C. Kroll, T.R. Dinger, and D.R. Clarke, J. Mater. Res. 7, 961 (1992).

    Article  CAS  Google Scholar 

  6. G.M. Pharr, W.C. Oliver, and D.R. Clarke, J. Electron. Mater. 19, 881 (1990).

    Article  CAS  Google Scholar 

  7. J.J. Gilman, J. Mater. Res. 7, 535 (1992).

    Article  CAS  Google Scholar 

  8. S.V. Hainsworth, A.J. Whitehead, and T.F. Page, in Plastic Deformation of Ceramics, edited by R.C. Bradt, C.A. Brookes, and J.L. Routbort (Plenum Press, New York, 1995), p. 173.

  9. J.C. Morris and D.L. Callahan, in Microstructure of Materials, edited by K.M. Krishnan (San Francisco Press, San Francisco, 1992), p. 104.

  10. D.L. Callahan and J.C. Morris, J. Mater. Res. 7, 1614 (1992).

    Article  CAS  Google Scholar 

  11. N.V. Novikov, S.N. Dub, Y.V. Milman, I.V. Gridneva, and S.I. Chugunova, Sverkhtverdye Materialy (Superhard Materials) 18, 37 (1996).

    Google Scholar 

  12. S.N. Dub, in Thin Films: Stresses and Mechanical Properties VII, edited by R.C. Cammarata, M. Nastasi, E.P. Busso, and W.C. Oliwer (Mater. Res. Soc. Symp. Proc. 505, Warrendale, PA, 1998), pp. 223–228.

  13. M.I. McMahon and R.J. Nelmes, Phys. Status Solidi B 198, 389 (1996).

    Article  CAS  Google Scholar 

  14. J.M. Besson, J.P. Itie, A. Polian, G. Weill, J.L. Masot, and J. Gonzalez, Phys. Rev. B 44, 421 (1991).

    Article  Google Scholar 

  15. J.J. Gilman, Czech J. Phys. 45, 913 (1995).

    Article  CAS  Google Scholar 

  16. Y. Gogotsi, M.S. Rosenberg, A. Kailer, and K.G. Nickel, in Proceedings of the Workshop on Tribology Issues and Opportunities in MEMS, edited by B. Bhushan (Kluwer, Dordrecht, The Netherlands, 1998), pp. 431–442.

  17. R.J. Needs and A. Mujica, Phys. Rev. B 51, 9652 (1995).

    Article  CAS  Google Scholar 

  18. R.O. Piltz, J.R. Maclean, S.J. Clark, G.J. Ackland, P.D. Hatton, and J. Crain, Phys. Rev. B 52, 4072 (1995).

    Article  CAS  Google Scholar 

  19. I.V. Gridneva, Y.V. Milman, and V.I. Trefilov, Phys. Status Solidi A 9, 177 (1972).

    Article  Google Scholar 

  20. E.R. Weppelmann, J.S. Field, and M.V. Swain, J. Mater. Res. 8, 830 (1993).

    Article  CAS  Google Scholar 

  21. E.R. Weppelmann, J.S. Field, and M.V. Swain, J. Mater. Sci. 30, 2455 (1995).

    Article  CAS  Google Scholar 

  22. M.C. Gupta and A.L. Ruoff, J. Appl. Phys. 51, 1072 (1980).

    Article  CAS  Google Scholar 

  23. J. Crain, G.J. Ackland, J.R. Maclean, R.O. Piltz, P.D. Hatton, and G.S. Pawley, Phys. Rev. B 50, 13043 (1994).

    Article  CAS  Google Scholar 

  24. P. Haasen and A. Kelly, Acta Metall. Mater. 5, 192 (1957).

    Article  CAS  Google Scholar 

  25. V.P. Alekhin, Physica Prochnosti i Plastichnosti Poverkhnostnykh Sloev Materialov (Nauka, Moscow, 1983).

    Google Scholar 

  26. B. Bhushan, A.V. Kulkarni, W. Bonin, and J.T. Wyrobek, Philos. Mag. A 74, 1117 (1996).

    Article  CAS  Google Scholar 

  27. T.F. Page, W.C. Oliver, and C.J. McHargue, J. Mater. Res. 7, 450 (1992).

    Article  CAS  Google Scholar 

  28. R.J. Nelmes, M.I. McMahon, N.G. Wright, D.R. Allan, and J.S. Loveday, Phys. Rev. B 48, 9883 (1993).

    Article  CAS  Google Scholar 

  29. C.S. Menoni, J.Z. Hu, and I.L. Spain, Phys. Rev. B 34, 362 (1986).

    Article  CAS  Google Scholar 

  30. C.H. Bates, F. Dachille, and R. Roy, Science 147, 860 (1965).

    Article  CAS  Google Scholar 

  31. A. Kailer, Y.G. Gogotsi, and K.G. Nickel, in High Pressure Materials Research, edited by R.M. Wentzcovitch, R.J. Hemley, W.J. Nellis, and P.Y. Yu (Mater. Res. Soc. Symp. Proc. 499, Warrendale, PA, 1998), pp. 225–230.

  32. N.W. Ashcroft and N.D. Mermin, Solid State Physics (Saunders College Publishing, Philadelphia, PA, 1976).

    Google Scholar 

  33. A.B. Chen, A. Sher, and W.T. Yost, in The Mechanical Properties of Semiconductors, edited by K.T. Faber and K. Malloy (Academic Press, London, 1992), Vol. 37, p. 68.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gogotsi, Y.G., Domnich, V., Dub, S.N. et al. Cyclic nanoindentation and Raman microspectroscopy study of phase transformations in semiconductors. Journal of Materials Research 15, 871–879 (2000). https://doi.org/10.1557/JMR.2000.0124

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0124

Navigation