Skip to main content
Log in

A study of the submicron indent-induced plastic deformation

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A new method has been developed to achieve a better understanding of submicron indent-induced plastic deformation. This method combines numerical modeling and various experimental data and techniques. Three-dimensional discrete dislocation dynamics simulation and the finite element method (FEM) were used to model the experimental conditions associated with nanoindentation testing in fcc crystals. Transmission electron microscopy (TEM) observations of the indent-induced plastic volume and analysis of the experimental loading curve help in defining a complete set of dislocation nucleation rules, including the shape of the nucleated loops and the corresponding macroscopic loading. A validation of the model is performed through direct comparisons between a simulation and experiments for a nanoindentation test on a [001] copper single crystal up to 50 nm deep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  2. M. V. Swain and J. Menčik, Thin Solid Films 253, 204–211 (1994).

    Article  CAS  Google Scholar 

  3. S. Field and M. V. Swain, J. Mater. Res. 10, 101 (1995).

    Article  CAS  Google Scholar 

  4. S. V. Hainsworth, H. W. Chandler, and T. F. Page, J. Mater. Res. 11, 1987–1995 (1996).

    Article  CAS  Google Scholar 

  5. T. Y. Tsui, W. C. Oliver, and G. M. Pharr, J. Mater. Res. 11, 752–759 (1996).

    Article  CAS  Google Scholar 

  6. A. Bolshakov, W. C. Oliver, and G. M. Pharr, J. Mater. Res. 11, 760 (1996).

    Article  CAS  Google Scholar 

  7. W. W. Gerberich, S. K. Venkataraman, H. Huang, S. E. Harvey, and D. L. Kohlstedt, Acta Metall. Mater. 43 4, 1569–1576 (1995).

    Article  CAS  Google Scholar 

  8. W. Zielinski, H. Huang, S. Venkataraman, and W. W. Gerberich, Philos. Mag. A 72 5, 1221–1237 (1995).

    Article  CAS  Google Scholar 

  9. W. Zielinski, H. Huang, and W. W. Gerberich, J. Mater. Res. 8, 1300 (1993).

    Article  CAS  Google Scholar 

  10. C. Robertson, S. Poissonnet, and L. Boulanger, J. Mater. Res. 13, 2123 (1998).

    Article  CAS  Google Scholar 

  11. T. A. Michalske and J. E. Houston, Acta Mater. 46 2, 391–396 (1998).

    Article  CAS  Google Scholar 

  12. C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton, unpublished.

  13. M. C. Fivel, C. F. Robertson, G. R. Canova, and L. Boulanger, Acta Mater. 46 17, 6183–6194 (1998).

    Article  CAS  Google Scholar 

  14. L. P. Kubin, G. R. Canova, M. Condat, B. Devincre, V. Pontikis, and Y. Bréchet, Solid State Phenom. 23&24, 455 (1992).

    Article  Google Scholar 

  15. L. P. Kubin and G. R. Canova, Scripta Metall. Mater. 27, 957 (1992).

    Article  CAS  Google Scholar 

  16. M. Fivel, M. Verdier, and G. Canova, Mater. Sci. Eng. A 234– 236, 923–926 (1997).

  17. M. Fivel, Doctoral thesis, INP Grenoble, Laboratoire GPM2, 1998.

  18. D. F. Bahr, D. E. Kramer, and W. W. Gerberich, Acta Mater. 46 10, 3605–3617 (1998).

    Article  CAS  Google Scholar 

  19. A. B. Mann and J. B. Pethica, Appl. Phys. Lett. 69 7, 907–909 (1996).

    Article  CAS  Google Scholar 

  20. J. Lépinoux and L. P. Kubin, Scripta Metall. 21 6, 833–838 (1987).

    Article  Google Scholar 

  21. N. M. Ghoniem and R. J. Amodeo, Solid State Phenom. 3&4, 377–388 (1988).

  22. I. A. Polonsky and L. M. Keer, Proc. R. Soc. London A 452 1953, 2173–2194 (1996).

    Article  Google Scholar 

  23. F. Seitz, Adv. Phys. 1, 43 (1952).

    Article  Google Scholar 

  24. J. Friedel, Dislocations (Pergamon Press, New York, Oxford, 1964).

    Google Scholar 

  25. J. P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed. (John Wiley and Sons, New York, 1982).

  26. E. Tadmor, M. Ortiz, and R. Phillips, Philos. Mag. A 73 6, 1528–1536 (1996).

    Article  Google Scholar 

  27. H. Hertz, J. reine Angewandte Mathematik 92, 156 (1882).

    Google Scholar 

  28. R. De Wit, Phys. Status Solidi 20, 575–580 (1967).

    Article  Google Scholar 

  29. K. Yasuda, K. Shinohara, M. Yamada, M. Kutsuhara, and C. Kinoshita, J. Nucl. Mater. 187, 109–116 (1992).

    Article  CAS  Google Scholar 

  30. K. L. Johnson, Contact Mechanics (Cambridge University Press, 1985).

  31. R. Hill, The Mathematical Theory of Plasticity (Oxford University Press, 1950).

  32. D. Tabor, Philos. Mag. 74 5, 1207–1212 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robertson, C.F., Fivel, M.C. A study of the submicron indent-induced plastic deformation. Journal of Materials Research 14, 2251–2258 (1999). https://doi.org/10.1557/JMR.1999.0301

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0301

Navigation