Skip to main content
Log in

A quantitative analysis of cavitation in Al–Cu–Mg metal matrix composites exhibiting high strain rate superplasticity

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Specimens of two Al–Cu–Mg (2124) composites, reinforced with 20 vol% of either Si3N4 particulates or Si3N4 whiskers, were tested under experimental conditions close to those for optimum high strain rate superplasticity. Both composites developed extensive internal cavitation during testing, but quantitative measurements show that significant cavity growth occurs throughout the test in the whisker-reinforced composite, but only at strains ≥1.0 in the particulate-reinforced composite. This difference in behavior is attributed to differences in the extent of a discontinuous liquid phase at the grain boundaries and at the matrix/reinforcement interfaces. It is concluded that the presence of an extensive liquid phase in the particulate-reinforced composite is beneficial for attaining high ductility because it relieves the stress concentrations from grain boundary sliding and thereby limits the growth of cavities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. A. Mohamed and T. G. Langdon, Acta Metall. 29, 911 (1981).

    Article  CAS  Google Scholar 

  2. T. G. Langdon, Metall. Trans. 13A, 689 (1982).

    Article  Google Scholar 

  3. T. G. Nieh, C. A. Henshall, and J. Wadsworth, Scripta Metall. 18, 1405 (1984).

    Article  CAS  Google Scholar 

  4. T. G. Nieh, P. S. Gilman, and J. Wadsworth, Scripta Metall. 19, 1375 (1985).

    Article  CAS  Google Scholar 

  5. K. Higashi and M. Mabuchi, in Advanced Composites ’93, edited by T. Chandra and A.K. Dhingra (TMS, Warrendale, PA, 1993), p. 35.

    Google Scholar 

  6. K. Higashi, Mater. Sci. Eng. A 166, 109 (1993).

    Article  Google Scholar 

  7. M. Mabuchi and K. Higashi, Key Eng. Mater. 104–107, 225 (1995).

    Article  Google Scholar 

  8. T. G. Langdon, Mater. Sci. Eng. A 174, 225 (1994).

    Article  Google Scholar 

  9. T. G. Langdon, Acta Metall. Mater. 42, 2437 (1994).

    Article  CAS  Google Scholar 

  10. T. G. Nieh, J. Wadsworth, and T. Imai, Scripta Metall. 26, 703 (1992).

    Article  CAS  Google Scholar 

  11. A. H. Chokshi, T. R. Bieler, T. G. Nieh, J. Wadsworth, and A. K. Mukherjee, in Superplasticity in Aerospace, edited by H. C. Heikkenen and T.R. McNelley (TMS, Warrendale, PA, 1988), p. 229.

    Google Scholar 

  12. T. Imai, M. Mabuchi, Y. Tozawa, and M. Yamada, J. Mater. Sci. Lett. 9, 255 (1990).

    Article  CAS  Google Scholar 

  13. M. Mabuchi, K. Higashi, and T. G. Langdon, Acta Metall. Mater. 42, 1739 (1994).

    Article  CAS  Google Scholar 

  14. M. Mabuchi and K. Higashi, Philos. Mag. Lett. 70, 1 (1994).

    Article  CAS  Google Scholar 

  15. J. Koike, M. Mabuchi, and K. Higashi, Acta Metall. Mater. 43, 199 (1995).

    Article  CAS  Google Scholar 

  16. K. Higashi and M. Mabuchi, Mater. Sci. Eng. A 176, 461 (1994).

    Article  CAS  Google Scholar 

  17. H. Iwasaki, M. Takeuchi, T. Mori, M. Mabuchi, and K. Higashi, Scripta Metall. Mater. 31, 255 (1994).

    Article  CAS  Google Scholar 

  18. M. Mabuchi, H. Iwasaki, K. Higashi, and T. G. Langdon, Mater. Sci. Technol. 11, 1295 (1995).

    Article  CAS  Google Scholar 

  19. Y. Ma, X. Zhao, and T. G. Langdon, in Creep and Fracture of Engineering Materials and Structures, edited by B. Wilshire and R. W. Evans (The Institute of Metals, London, England, 1990), p. 199.

    Google Scholar 

  20. Y. Ma and T. G. Langdon, Acta Metall. Mater. 42, 2753 (1994).

    Article  CAS  Google Scholar 

  21. Y. Ma and T. G. Langdon, Metall. Mater. Trans. 27A, 873 (1996).

    Article  CAS  Google Scholar 

  22. A. Ayensu and T. G. Langdon, Metall. Mater. Trans. 27A, 901 (1996).

    Article  CAS  Google Scholar 

  23. X. Zhao and T. G. Langdon, in Superplasticity in Metals, Ceramics, and Intermetallics, edited by M. J. Mayo, M. Kobayashi, and J. Wadsworth (Mater. Res. Soc. Symp. Proc. 196, Pittsburgh, PA, 1990), p. 215.

  24. Y. Ma, X. Zhao, and T. G. Langdon, in Microstructural Science, edited by W. R. Kanne, G. W. E. Johnson, J. D. Braun, and M. R. Louthan (ASM INTERNATIONAL, Materials Park, OH, 1993), Vol. 20, p. 559.

  25. M. Mabuchi and K. Higashi, Mater. Trans. JIM 35, 399 (1994).

    Article  CAS  Google Scholar 

  26. M. Mabuchi and K. Higashi, J. Mater. Res. 10, 2494 (1995).

    Article  CAS  Google Scholar 

  27. J. Koike, M. Mabuchi, and K. Higashi, J. Mater. Res. 10, 133 (1995).

    Article  CAS  Google Scholar 

  28. T. G. Nieh and J. Wadsworth, in Superplasticity in Advanced Materials, edited by S. Hori, M. Tokizane, and N. Furushiro (The Japan Society for Research on Superplasticity, Osaka, Japan, 1991), p. 339.

    Google Scholar 

  29. K. A. Padmanabhan and G. J. Davies, Superplasticity (Springer-Verlag, Berlin, 1980).

    Book  Google Scholar 

  30. T. G. Langdon, Scripta Metall. 11, 997 (1977).

    Article  CAS  Google Scholar 

  31. T. G. Langdon, Metal Sci. 16, 175 (1982).

    Article  Google Scholar 

  32. M. V. Speight and W. Beere, Metal Sci. 9, 190 (1975).

    Article  Google Scholar 

  33. A. H. Chokshi and T. G. Langdon, Acta Metall. 35, 1089 (1987).

    Article  CAS  Google Scholar 

  34. Y. Ma and T. G. Langdon, Scripta Metall. Mater. 26, 1239 (1992).

    Article  CAS  Google Scholar 

  35. J. W. Hancock, Metal Sci. 10, 319 (1976).

    Article  CAS  Google Scholar 

  36. A. K. Ghosh, in Deformation of Polycrystals: Mechanisms and Microstructures, edited by N. Hansen, A. Horsewell, T. Leffers, and H. Lilholt (Risø National Laboratory, Roskilde, Denmark, 1981), p. 277.

    Google Scholar 

  37. Y. Ma, M. Zhou, O. T. Sørensen, and T. G. Langdon, in Superplasticity and Superplastic Forming, edited by A. K. Ghosh and T. R. Bieler (TMS Warrendale, PA, 1995), p. 93.

    Google Scholar 

  38. A. H. Chokshi and T. G. Langdon, Acta Metall. Mater. 38, 887 (1990).

    Article  Google Scholar 

  39. H. Jones, Metal. Sci. J. 5, 15 (1971).

    Article  CAS  Google Scholar 

  40. F. A. Mohamed and T. G. Langdon, Metall. Trans. 5, 2339 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wada, S., Mabuchi, M., Higashi, K. et al. A quantitative analysis of cavitation in Al–Cu–Mg metal matrix composites exhibiting high strain rate superplasticity. Journal of Materials Research 11, 1755–1764 (1996). https://doi.org/10.1557/JMR.1996.0220

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0220

Navigation