Skip to main content
Log in

Crack-face fiber bridging: Finite element analysis, analytical model, and experimental result

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Prior to considering crack-face bridging, the stress/strain-field ahead of the crack tip in the compact tension (CT) geometry is numerically assessed by means of finite element method (FEM). The stress field along the crack line which has a decreasing profile of tensile stresses from the crack tip converts to monotonically increasing compressive stresses toward the back face of the CT specimen via a rotational center. Based on these stress-field analyses, a novel crack-face bridging model for fiber-reinforced brittle matrix composites is presented. The application of the model to the experimental result of a 2D-C/C composite enables one to estimate the crack-face fiber bridging stresses and their distribution profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Sakai and R. C. Bradt, Int. Mater. Rev. 38, 53 (1993).

    Article  CAS  Google Scholar 

  2. M. Sakai, in The Centennial Issue of The Ceramic Society of Japan (1991), Vol. 99, p. 983.

    Article  CAS  Google Scholar 

  3. A. Wanner, R. Rizzo, and K. Kromp, in Toughening Mechanisms in Quasi-Brittle Materials, edited by S. P. Shah (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991), pp. 405–423.

    Chapter  Google Scholar 

  4. M. D. Thouless, J. Am. Ceram. Soc. 71, 408 (1988).

    Article  CAS  Google Scholar 

  5. K. T. Faber, W-H. Gu, H. Cai, and R. A. Winholtz, in Toughening Mechanisms in Quasi-Brittle Materials, edited by S. P. Shah (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991), pp. 3–17.

    Chapter  Google Scholar 

  6. B. Harris, Metal. Sci. August-September, 351 (1980).

    Google Scholar 

  7. C. H. Hsueh and P. F. Becher, J. Am. Ceram. Soc. 71, C234 (1988).

    CAS  Google Scholar 

  8. M. Sakai, T. Miyajima, and M. Inagaki, Composite Sci. Technol. 40, 231 (1991).

    Article  Google Scholar 

  9. R. W. Steinbrech, A Reichl, and W. Schaarwächter, J. Am. Ceram. Soc. 73, 2009 (1990).

    Article  CAS  Google Scholar 

  10. R. M. L. Foote, Y. W. Mai, and B. Cotterell, J. Mech. Phys. Solids 34, 593 (1986).

    Article  Google Scholar 

  11. B. Cotterell and Y. M. Mai, J. Mater. Sci. 22, 2734 (1987).

    Article  CAS  Google Scholar 

  12. R. Ballarini, S. P. Shah, and L. M. Keer, Eng. Fract. Mech. 20, 433 (1984).

    Article  Google Scholar 

  13. R. M. L. Foote, Y. W. Mai, and B. Cotterell, J. Mech. Phys. Solids. 34, 593 (1986).

    Article  Google Scholar 

  14. Y. W. Mai and B.R. Lawn, J. Am. Ceram. Soc. 70, 289 (1987).

    Article  CAS  Google Scholar 

  15. X. Z. Hu, E. H. Lutz, and M. V. Swain, J. Am. Ceram. Soc. 74, 1828 (1991).

    Article  CAS  Google Scholar 

  16. X. Z. Hu and Y. W. Mai, J. Mater. Sci. 27, 3502 (1992).

    Article  CAS  Google Scholar 

  17. E. H. Lutz and M. Sakai, J. Am. Ceram. Soc. 76, 3113 (1994).

    Article  Google Scholar 

  18. T. Suzuki and M. Sakai, Int. J. Fract. 65, 329 (1994).

    Article  Google Scholar 

  19. S. T. Rolfe and J. M. Barsom, Fracture and Fatique Control in Structures (Prentice-Hall, Inc., Englewood Cliffs, NJ, 1977), Chap. 1.

    Google Scholar 

  20. D. L. Chen, B. Weiss, and R. Stickler, Int. J. Fract. 55, R3 (1992).

    Article  Google Scholar 

  21. D. L. Chen, B. Weiss, R. Stickler, A. Hadroboletz, and Z. G. Wang, in Proceedings of 1st Materials Science Symposium, edited by D. L. Chen et al. [Chinese Association of Science and Technology in Austria (CASTA), Vienna, 1993], pp. 20–31.

    Google Scholar 

  22. D. L. Chen, B. Weiss, and R. Stickler, Int. J. Fract. 55, R3 (1992).

    Article  Google Scholar 

  23. C. H. Liu and H. A. Mang, Int. J. Fract. 63, R67 (1993).

    Article  Google Scholar 

  24. Frank Zok, in Toughening Mechanisms in Quasi-Brittle Materials, edited by S. P. Shah (Kluwer Academic, Dordrecht, The Netherlands, 1991), pp. 425–439.

    Chapter  Google Scholar 

  25. J. C. Amazigo and B. Budiansky, J. Mech. Phys. Solids. 36, 581 (1988)

    Article  Google Scholar 

  26. J. W. Cao and M. Sakai, Carbon (1996, in press).

  27. B. Budiansky, J. C. Amazigo, and A. G. Evans, J. Mech. Phys. Solids. 36, 167 (1988).

    Article  Google Scholar 

  28. D. S. Farquhar, S. L. Phoenix, and R. Raj, Acta Metall. Mater. 42, 65 (1994).

    Article  CAS  Google Scholar 

  29. G. C. Sih, Mechanics of Fracture Initiation and Propagation (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991), pp. 213–270.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, JW., Sakai, M. Crack-face fiber bridging: Finite element analysis, analytical model, and experimental result. Journal of Materials Research 11, 1537–1544 (1996). https://doi.org/10.1557/JMR.1996.0192

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0192

Navigation