Skip to main content
Log in

Mechanisms of intrinsic stresses generation in sputtered amorphous Si: H films

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The relation between stresses of sputtered a-Si: H films and the film deposition conditions are investigated. The film stresses change from a large compressive stress of 1000 MPa to an almost stress-free one. They arise from distortions of the Si network via the following two mechanisms. The first results from the inclusion of the Ar-sputtering gas into the films, which provides volume expansion of the film network. The other is due to structural disorders, such as a deviation of the Si bond angle which is generated during the deposition processes. Moreover, it is found that Si–H terminations in the films contribute to reducing the film stresses because the Si–H termination breaks and relaxes the Si network. These effects can be realized as long as the Si–H terminations are homogeneously distributed in the films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kawakami, 9th Optical Sensors Conference (Firenze, Italy), paper Th2 (May 1993), Vol. 12.

  2. S. Kawakami and O. Hanaizumi, Trans. Institute of Electronics, Information and Communication Engineers (IEICE), C-I 77, 334 (1994).

    Google Scholar 

  3. K. Siraishi and S. Kawakami, Opt. Lett. 15, 516 (1990).

    Article  Google Scholar 

  4. L. M. Mack and A. Reisman, J. Electrochem. Soc. 136, 3433 (1989).

    Article  CAS  Google Scholar 

  5. W. Beyer, Tetrahedrally Bonded Amorphous Semiconductors, edited by D. Adler and H. Fritzshce (Plenum Press, New York, 1985), p. 129.

    Chapter  Google Scholar 

  6. G. Ganguly and A. Matsuda, Phys. Rev. B 7, 3661 (1993).

    Article  Google Scholar 

  7. J. E. Smith, Jr., M. H. Brodsky, B. L. Crowder, and M. I. Nathan, Phys. Rev. Lett. 26, 642 (1971).

    Article  CAS  Google Scholar 

  8. M. H. Brodsky, M. Cardona, and J. J. Cuomo, Phys. Rev. B 16, 3556 (1977).

    Article  CAS  Google Scholar 

  9. D. Beeman and R. Albert, Adv. Phys. 26, 339 (1977).

    Article  CAS  Google Scholar 

  10. M. F. Thorpe, Phys. Rev. B 8, 5352 (1973).

    Article  CAS  Google Scholar 

  11. H. Takahashi, H. Nagata, and H. Kataoka, unpublished.

  12. J. A. Aboaf, J. Electrochem. Soc. 116, 1732 (1969).

    Article  CAS  Google Scholar 

  13. S. R. Kurtz, Y. S. Tsuno, and R. Tsu, Appl. Phys. Lett. 49, 951 (1986).

    Article  CAS  Google Scholar 

  14. J. A. Thoronton, J. Tabock, and D. W. Hoffman, Thin Solid Films 45, 387 (1977).

    Article  Google Scholar 

  15. C. T. Wu, Thin Solid Films 64, 103 (1979).

    Article  CAS  Google Scholar 

  16. H. Takahashi, H. Nagata, and H. Kataoka, Jpn. J. Appl. Phys. 33, 4978 (1994).

    Article  CAS  Google Scholar 

  17. R. S. Nowicki, W. D. Buckley, W. D. Mackintosh, and I. V. Mitchell, J. Vac. Sci. Technol. 11, 675 (1974).

    Article  CAS  Google Scholar 

  18. J. P. Harbison, A. J. Williams, and D. V. Lang, J. Appl. Phys. 55, 946 (1984).

    Article  CAS  Google Scholar 

  19. J. C. G. de Sacde, C. N. Afonso, J. L. Escudero, R. Serna, F. Catalina, and E. Bernabeu, Appl. Opt. 31, 6133 (1992).

    Article  Google Scholar 

  20. D. Beeman, R. Tsu, and M. F. Thorpe, Phys. Rev. B 32, 874 (1985).

    Article  CAS  Google Scholar 

  21. H. Takahashi, H. Nagata, H. Kataoka, and H. Takai, J. Appl. Phys. 75, 2667 (1994).

    Article  CAS  Google Scholar 

  22. J. C. Knights, Jpn. Appl. Phys. 18, 101 (1979).

    Article  Google Scholar 

  23. S. Iizima, H. Okushi, A. Matsuda, S. Yamasaki, K. Nakagawa, M. Mitsumura, and K. Tanaka, Jpn. J. Appl. Phys. 19, 521 (1980).

    Article  Google Scholar 

  24. J. R. Abelson, Appl. Phys. A56, 493 (1993).

    Article  CAS  Google Scholar 

  25. R. Banerjee, S. N. Sharma, A. K. Bandyopadhyay, A. K. Batabyal, and A. K. Barua, J. Mater. Sci. Lett. 12, 1316 (1993).

    Article  CAS  Google Scholar 

  26. S. C. Moss and J. F. Graczyk, Proc. 10th Int. Conf. Phys. Semicond., edited by S. P. Keller et al. (U.S. Atom. Energy Commission, 1970), p. 658.

  27. K. Tsuji and S. Minomura, J. Phys. 42, C4–233 (1981).

    Google Scholar 

  28. A. Barna, P. B. Barna, G. Radnoczi, L. Toth, and P. Thomas, Phys. Status Solidi A 41, 81 (1977).

    Article  CAS  Google Scholar 

  29. J. C. Phillips, J. Non-Cryst. Solids 34, 153 (1979).

    Article  CAS  Google Scholar 

  30. G. H. Dohler, R. Dandoloff, and H. Bilz, J. Non-Cryst. Solids 42, 87 (1980).

    Article  Google Scholar 

  31. T. Shimizu, J. Non-Cryst. Solids 59/60, 117 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, H., Nagata, H., Kataoka, H. et al. Mechanisms of intrinsic stresses generation in sputtered amorphous Si: H films. Journal of Materials Research 10, 2736–2741 (1995). https://doi.org/10.1557/JMR.1995.2736

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.2736

Navigation