Skip to main content
Log in

The characterization of high-performance PAN-based carbon fibers developed by continuous carbonization and air oxidation

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The properties of four kinds of Type II carbon fibers, which had been precarbonized at 300 °C, 400 °C, 500 °C, and 600 °C, respectively, during two-stage continuous carbonization, were measured after being air oxidized for periods of 1 to 6 min at 550 °C. The effects of precarbonization temperature on mechanical properties, density, morphology, elemental composition, and microstructure of the carbon fibers during the air oxidation are discussed in this article. The precarbonization process strongly affected the surface properties and mechanical properties of the final oxidized carbon fibers. The carbon fibers developed from the different precarbonization temperatures all had different structures. The carbon fibers that had been precarbonized at 300 °C had a more ordered structure than other fibers after air oxidation. These carbon fibers also had a higher performance than the other fibers. Carbon fibers also showed different oxidation behaviors caused by differences in surface morphology resulting from each different precarbonization temperature. Optimum conditions not only improved the tensile strength and modulus, but also increased the density and oxygen content. Experimental results showed that the tensile strength of the carbon fibers precarbonized at 300 °C increased from 2.4 GPa to 4.3 GPa (80%) after 6 min oxidation at 550 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.N. Hay, J. Polym. Sci. A1 (6), 2127 (1968).

    Article  Google Scholar 

  2. A.J. Clarks and J.F. Bailey, Nature (London) 243, 146 (1973).

    Article  Google Scholar 

  3. E. Fitzer and D.J. Muller, Carbon 13, 163 (1975).

    Google Scholar 

  4. W. Watt, US Patent 3 367 812 (1968).

  5. J. W. Herrick, Air Force Mater. Lab. Techn. Rep. AFML-TR66-178 (1966).

  6. J. B. Donnet, Carbon, 6, 161 (1968).

    Article  CAS  Google Scholar 

  7. D. Clark, N. J. Wadsworth, and W. Watt, Proc. 2nd Carbon Fiber Conf., Plastics Ins., London (1974), p. 44.

    Google Scholar 

  8. O.P. Bahl, R.B. Mathur, and T.L. Dhami, Polym. Eng. Sci. 24, 455 (1984).

    Article  CAS  Google Scholar 

  9. D. W. McKee and V. J. Mimeault, in Chemistry and Physics of Carbon, edited by P. L. Walker, Jr. and P. A. Thrower (Marcel Dekker Inc., New York, 1973), p. 151.

    Google Scholar 

  10. J. B. Donnet and R. C. Bansal, Carbon Fibers (Marcel Dekker Inc., New York, 1984), Chap. 3.

    Google Scholar 

  11. T.H. Ko, H. Y. Ting, and C.H. Lin, J. Appl. Polym. Sci. 35, 631 (1988).

    Article  CAS  Google Scholar 

  12. T.H. Ko, P. Chiranairadul, H.Y. Ting, and C.H. Lin, J. Appl. Polym. Sci. 37, 541 (1989).

    Article  CAS  Google Scholar 

  13. T.H. Ko, SAMPE Quarterly 22, 13 (1991).

    CAS  Google Scholar 

  14. T.H. Ko, C.C. Yang, and W.T. Chang, Carbon 31, 583 (1993).

    Article  CAS  Google Scholar 

  15. T.H. Ko, J. Appl. Polym. Sci. 42, 1949 (1991).

    Article  CAS  Google Scholar 

  16. T.H. Ko, T.C. Day, J. A. Peng, and M.F. Lin, Carbon 31, 765 (1993).

    Article  CAS  Google Scholar 

  17. T.H. Ko, P. Chiranairadul, and C.H. Lin, Polym. Eng. Sci. 31, 1618 (1991).

    Article  CAS  Google Scholar 

  18. S.C. Bennett and D.J. Johnson, Carbon 17, 25 (1979).

    Article  CAS  Google Scholar 

  19. S.E. Stein and R.L. Brown, Carbon 23, 105 (1985).

    Article  CAS  Google Scholar 

  20. M. Balasubramanian, M. K. Jain, S. K. Bhattacharya, and A. S. Abhiraman, J. Mater. Sci. 22, 3864 (1987).

    Article  CAS  Google Scholar 

  21. T.H. Ko, Carbon (1995, in press).

  22. D.W. Gibson, 18th Int. SAMPE Symp. 18, 165 (1973).

    Google Scholar 

  23. B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Reading, MA, 1978), Chap. 3.

    Google Scholar 

  24. F. Molleyre and M. Bastick, Proc: Conf. Carbon ‘76, Baden-Baden (Deutsche Keram. Gesell., 1976), p. 500.

  25. A. Oberlin, Carbon 17, 7 (1979).

    Article  CAS  Google Scholar 

  26. A. Oberlin and M. Oberlin, J. Microsc. 132, 353 (1983).

    Article  CAS  Google Scholar 

  27. T.H. Ko, J. Appl. Polym. Sci. 43, 589 (1991).

    Article  CAS  Google Scholar 

  28. R. Moreton, Fibre Sci. Technol. 1, 273 (1968).

    Article  Google Scholar 

  29. J.W. Johnson, Appl. Polym. Symp., No. 9, 229 (1969).

    Google Scholar 

  30. J.W. Johnson and D.J. Thorne, Carbon 7, 659 (1969).

    Article  CAS  Google Scholar 

  31. R. Moreton and W. Watt, Nature (London) 247, 360 (1974).

    Article  CAS  Google Scholar 

  32. J.B. Jones, J.B. Barr, and R.E. Smith, J. Mater. Sci. 15, 2455 (1980).

    Article  CAS  Google Scholar 

  33. W.N. Reynolds and J.V. Sharp, Carbon 12, 103 (1974).

    Article  CAS  Google Scholar 

  34. D.J. Johnson, J. Phys. D: Appl. Phys. 20, 286 (1987).

    Article  CAS  Google Scholar 

  35. S.C. Bennett, D.J. Johnson, and W. Johnson, J. Mater. Sci. 18, 3337 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ko, TH., Li, CH. & Hu, CH. The characterization of high-performance PAN-based carbon fibers developed by continuous carbonization and air oxidation. Journal of Materials Research 10, 1529–1538 (1995). https://doi.org/10.1557/JMR.1995.1529

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1995.1529

Navigation