Skip to main content
Log in

Structure and mechanical properties of epitaxial TiN/V0.3Nb0.7N(100) superlattices

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Epitaxial TiN/V0.3Nb0.7N superlattices with a 1.7% lattice mismatch between the layers were grown by reactive magnetron sputtering on MgO(001) substrates. Superlattice structure, crystalline perfection, composition modulation amplitudes, and coherency strains were studied using transmission electron microscopy and x-ray diffraction. Hardness H and elastic modulus were measured by nanoindentation. H increased rapidly with increasing Λ, peaking at H values ≍75% greater than rule-of-mixtures values at Λ ≍ 6 nm, before decreasing slightly with further increases in Λ. A comparison with previously studied lattice-matched TiN/V0.6Nb0.4N superlattices, which had nearly identical composition modulation amplitudes, showed a similar H variation, but a smaller H enhancement of ≍50%. The results suggest that coherency strains, which were larger for the mismatched TiN/V0.3Nb0.7N superlattices, were responsible for the larger hardness enhancement. The results are discussed in terms of coherency strain theories developed for spinodally decomposed materials. Nanoindenter elastic modulus results showed no significant anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Helmersson, S. Todorova, S.A. Barnett, J.E. Sundgren, L.C. Markert, and J. E. Greene, J. Appl. Phys. 62, 481 (1987).

    Article  CAS  Google Scholar 

  2. P. B. Mirkarimi, L. Hultman, and S. A. Barnett, Appl. Phys. Lett. 57, 2654 (1990).

    Article  CAS  Google Scholar 

  3. K. M. Hubbard, T. R. Jervis, P. B. Mirkarimi, and S. A. Barnett, J. Appl. Phys. 72, 4466 (1992).

    Article  CAS  Google Scholar 

  4. M. Shinn, L. Hultman, and S. A. Barnett, J. Mater. Res. 7, 901 (1992).

    Article  CAS  Google Scholar 

  5. X. Chu, M. S. Wong, W. D. Sproul, S. L. Rohde, and S. A. Barnett, J. Vac. Sci. Technol. A 10, 1604 (1992).

    Article  CAS  Google Scholar 

  6. E. Niemi, A. S. Korhonen, E. Hariju, and V. Kauppinen, J. Vac. Sci. Technol. A 4, 2763 (1986).

    Article  CAS  Google Scholar 

  7. H. Randhawa, J. Vac. Sci. Technol. A 4, 2755 (1986).

    Article  CAS  Google Scholar 

  8. F. Benesovsky, R. Kieffer, and P. Ettmayer, in Encyclopedia of Chemical Technology, 3rd ed. (John Wiley, New York, 1981), Vol. 15.

  9. L. E. Toth, Transition Metal Nitrides and Carbides (Academic Press, New York, 1971).

    Google Scholar 

  10. J. C. Koehler, Phys. Rev. B 2, 547 (1970).

    Article  Google Scholar 

  11. S.L. Lehoczky, Phys. Rev. Lett. 41, 1814 (1978).

    Article  CAS  Google Scholar 

  12. J.W. Matthews and A.E. Blakeslee, J. Cryst. Growth 27, 118 (1974).

    CAS  Google Scholar 

  13. A. Guinier, X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies (Freeman, San Francisco, CA, 1963).

    Google Scholar 

  14. D. B. McWhan, in Synthetic Modulated Structures, edited by L. L. Chang and B.C. Giessen (Academic Press, New York, 1985), Chap. 2.

    Google Scholar 

  15. P.B. Mirkarimi, M. Shinn, and S.A. Barnett, J. Vac. Sci. Technol. A 10, 75 (1992).

    Article  CAS  Google Scholar 

  16. B.D. Cullity, Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley, Reading, MA, 1978).

    Google Scholar 

  17. L. Hultman, L. R. Wallenberg, M. Shinn, and S. A. Barnett, J. Vac. Sci. Technol. A 10, 618 (1992).

    Article  Google Scholar 

  18. G.E. Henein and J.E. Hilliard, J. Appl. Phys. 54, 728 (1983).

    Article  CAS  Google Scholar 

  19. J.O. Kim, J.D. Achenbach, P.B. Mirkarimi, M. Shinn, and S.A. Barnett, J. Appl. Phys. 72, 1805 (1992).

    Article  CAS  Google Scholar 

  20. E. M. Gyorgy, D. B. McWhan, J. F. Dillon, Jr., L. R. Walker, and J.V. Waszczak, Phys. Rev. B 25, 6739 (1982).

    Article  CAS  Google Scholar 

  21. B. Davis, Ph.D. Thesis, Northwestern University, Evanston, IL (1990).

    Google Scholar 

  22. J. Birch, Y. Yamamoto, L. Hultman, G. Radnoczi, J-E. Sundgren, and L.R. Wallenberg, Vacuum 41, 1231 (1990).

    Article  CAS  Google Scholar 

  23. V. S. Speriosu and T. Vreeland, Jr., J. Appl. Phys. 56, 1591 (1984).

    Article  CAS  Google Scholar 

  24. D. Chrzan and P. Dutta, J. Appl. Phys. 59, 1504 (1986).

    Article  CAS  Google Scholar 

  25. P. B. Mirkarimi and S. A. Barnett (unpublished).

  26. G.E. Henein, Ph.D. Thesis, Northwestern University, Evanston, IL (1979).

    Google Scholar 

  27. C.A. Gealer, M.S. Thesis, Northwestern University, Evanston, IL (1986).

    Google Scholar 

  28. P.B. Mirkarimi, Ph.D. Thesis, Northwestern University, Evanston, IL (1993).

    Google Scholar 

  29. B. M. Davis, D. X. Li, D. N. Seidman, J. B. Ketterson, R. Bhadra, and M. Grimsditch, J. Mater. Res. 7, 1356 (1992).

    Article  CAS  Google Scholar 

  30. T. Tsakalakos, Ph.D. Thesis, Northwestern University, Evanston, IL (1977).

    Google Scholar 

  31. J. Mattson, R. Bhadra, J. B. Ketterson, M. Brodsky, and M. Grimsditch, J. Appl. Phys. 67, 2873 (1990).

    Article  CAS  Google Scholar 

  32. E. Torok, A. J. Perry, L. Chollet, and W. D. Sproul, Thin Solid Films 153, 37 (1987).

    Article  Google Scholar 

  33. A.J. Perry, Thin Solid Films 193/194, 463 (1990).

    Article  Google Scholar 

  34. X. Jiang, M. Wang, K. Schmidt, E. Dunlop, J. Haupt, and W. Gissler, J. Appl. Phys. 69, 3053 (1991).

    Article  CAS  Google Scholar 

  35. L. Hultman, M. Shinn, P. B. Mirkarimi, and S. A. Barnett, J. Cryst. Growth 135, 309 (1994).

    Article  CAS  Google Scholar 

  36. M. F. Doerner and W. D. Nix, J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  37. P.B. Mirkarimi, M. Shinn, S.A. Barnett, S. Kumar, and M. Grimsditch, J. Appl. Phys. 71, 4955 (1992).

    Article  CAS  Google Scholar 

  38. J. E. Krzanowski, Scripta Met. et Mater. 25, 1465 (1991).

    Article  Google Scholar 

  39. M. Shinn and S. A. Barnett, Appl. Phys. Lett. 64, 61 (1994).

    Article  CAS  Google Scholar 

  40. E.S. Pacheco and T. Mura, J. Mech. Phys. Solids 17, 163 (1969).

    Article  Google Scholar 

  41. H. Holleck, J. Vac. Sci. Technol. A 4, 2661 (1986).

    Article  CAS  Google Scholar 

  42. E. Nembach and G. Neite, Prog. Mater. Sci. 29, 177 (1985).

    Article  CAS  Google Scholar 

  43. J.W. Cahn, Acta Metall. 11, 1274 (1963).

    Article  Google Scholar 

  44. M. Kato, T. Mori, and L.H. Schwartz, Acta Metall. 28, 285 (1980).

    Article  CAS  Google Scholar 

  45. B. Ditchek and L.H. Schwartz, Annu. Rev. Mater. Sci. 9, 219 (1979).

    Article  CAS  Google Scholar 

  46. D. Tabor, J. Inst. Metals 79, 1 (1951).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirkarimi, P.B., Barnett, S.A., Hubbard, K.M. et al. Structure and mechanical properties of epitaxial TiN/V0.3Nb0.7N(100) superlattices. Journal of Materials Research 9, 1456–1467 (1994). https://doi.org/10.1557/JMR.1994.1456

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.1456

Navigation