Skip to main content
Log in

Evidence for self-sustained MoSi2 formation during room-temperature high-energy ball milling of elemental powders

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We present evidence indicating that rapid, self-sustained, high-temperature reactions play an important role in the formation of tetragonal MoSi2 during room-temperature high-energy ball milling of elemental powders. Such reactions appear to be ignited by mechanical impact in an intimate, fine-grained, Mo–Si physical mixture formed after an initial milling period. Under certain conditions, limited propagation of self-sustained reactions in these uncompacted powder mixtures renders the compound formation seemingly gradual in bulk-averaged analysis. It is suggested that this type of reaction is an important mechanism in the mechanical alloying of highly exothermic systems. Results are discussed in comparison with similar reactions we observed in ball-milled Al–Ni powders, with self-sustained combustion synthesis previously reported for Mo–Si powders, and with interfacial diffusional reactions in Mo–Si powders or thin-film diffusion couples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Shobu, K. Tsuji, and T. Watanabe, Mater. Sci. Forum 34, 675 (1988).

    Google Scholar 

  2. R. Wehrman, in High Temperature Materials and Technology, edited by I. E. Campbell and E. M. Sherwood (John Wiley, New York, 1967), p. 399.

    Google Scholar 

  3. B. Aronsson, T. Lundström, and S. Rundqvist, Borides, Suicides and Phosphides (John Wiley, New York, 1965).

    Google Scholar 

  4. F. D. Gac and J. J. Petrovic, J. Am. Ceram. Soc. 68, C-200 (1985).

    Article  CAS  Google Scholar 

  5. S. C. Deevi, J. Mater. Sci. 26, 3343 (1991).

    Article  CAS  Google Scholar 

  6. S. Zhang and Z.A. Munir, J. Mater. Sci. 26, 3685 (1991).

    Article  CAS  Google Scholar 

  7. R. B. Schwarz, S. R. Srinivasan, J. J. Petrovic, and C. J. Maggiore, Mater. Sci. Eng. A 155, 75 (1992).

    Article  Google Scholar 

  8. M. Atzmon, Phys. Rev. Lett. 64, 487 (1990).

    Article  CAS  Google Scholar 

  9. M. Atzmon, in Solid State Powder Processing, edited by A. H. Clauer and J. J. deBarbadillo (The Minerais, Metals and Materials Society, Warrendale, PA, 1990), p. 173; and also Mater. Sci. Eng. A 134, 1326 (1991).

    Google Scholar 

  10. C.C. Koch, Ann. Rev. Mater. Sci. 19, 121 (1989); and C.C. Koch, in Materials Science and Technology, edited by R. W. Cahn, P. Haassen, and E.J. Kramer (VCH, Weinheim, 1991), Vol. 15, p. 193.

    Article  CAS  Google Scholar 

  11. Powder Diffraction File, edited by R. Jenkins (International Center for Diffraction Data, formerly the Joint Committee on Powder Diffraction Standards, Swarthmore, PA).

  12. E. Hellstern, H. J. Fecht, Z. Fu, and W. L. Johnson, J. Appl. Phys. 65, 305 (1989).

    Article  CAS  Google Scholar 

  13. E. Gaffet, F. Faudot, and M. Harmelin, Mater. Sci. Forum 88–90, 375 (1992).

    Article  Google Scholar 

  14. Z. H. Yan, private communication; R. T. Leonard and C. C. Koch, Nanostruct. Mater. 1, 471 (1992).

    Article  Google Scholar 

  15. M. Atzmon, E. Ma, and C.C. Koch, unpublished results.

  16. Binary Alloy Phase Diagrams, edited by T. B. Massalski (ASM, Metals Park, OH, 1986), Vol. 2, p. 1632; and P. Villars and D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (ASM, Metals Park, OH, 1985), Vol. IV, p. 4459.

  17. J.E.E. Baglin, J. Dempsey, W. Hammer, F.M. d’Heurle, C.S. Petersson, and O. Serrano, J. Electron. Mater. 8, 641 (1979).

    Article  CAS  Google Scholar 

  18. F.M. d’Heurle, C.S. Petersson, and M.Y. Tsai, J. Appl. Phys. 51, 5976 (1980).

    Article  Google Scholar 

  19. J.Y. Cheng, H.C Cheng, and L.J. Chen, J. Appl. Phys. 61, 2218 (1987).

    Article  CAS  Google Scholar 

  20. K. Holloway, K. B. Do, and R. Sinclair, J. Appl. Phys. 65, 474 (1989).

    Article  CAS  Google Scholar 

  21. O.B. Loopstra, Ph.D. Thesis, Technische Universiteit Delft, The Netherlands, 1992.

  22. L. F. Matteiss, Phys. Rev. B 45, 3252 (1992).

    Article  Google Scholar 

  23. R. B. Schwarz and C. C Koch, Appl. Phys. Lett. 49, 146 (1986).

    Article  CAS  Google Scholar 

  24. M. Atzmon, K. M. Unruh, and W. L. Johnson, J. Appl. Phys. 58, 3865 (1985).

    Article  CAS  Google Scholar 

  25. R. B. Schwarz, R. R. Petrich, and C. K. Saw, J. Non-Cryst. Solids 76, 281 (1985).

    Article  CAS  Google Scholar 

  26. J. Eckert, L. Schultz, E. Hellstern, and K. Urban, J. Appl. Phys. 64, 3224 (1988).

    Article  CAS  Google Scholar 

  27. F. P. Bowden and A. D. Yoffee, Initiation and Growth of Explosion in Liquids and Solids (Cambridge University Press, Cambridge, 1952).

    Book  Google Scholar 

  28. R.J. Highmore, R.E. Somekh, J.E. Evetts, and A.L. Greer, J. Less-Comm. Met. 140, 353 (1988).

    Article  CAS  Google Scholar 

  29. E. Ma and M. Atzmon, Mod. Phys. Lett. B 6, 127 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, E., Pagán, J., Cranford, G. et al. Evidence for self-sustained MoSi2 formation during room-temperature high-energy ball milling of elemental powders. Journal of Materials Research 8, 1836–1844 (1993). https://doi.org/10.1557/JMR.1993.1836

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1993.1836

Navigation