Skip to main content
Log in

Analysis of buried oxide layer formation and mechanism of threading dislocation generation in the substoichiometric oxygen dose region

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The structure of SIMOX wafers implanted at 180 keV with doses of 0.1 × 1018-2.0 × 101816O+ cm−2 at 550 °C, followed by annealing over the temperature range of 1050–1350 °C, has been investigated using cross-sectional transmission electron microscopy and a chemical etching. With doses of 0.35 × 1018-0.4 × 1018 cm−2, a continuous buried oxide layer having no Si island inside is formed by high-temperature annealing at 1350 °C. At a dose of 0.7 × 1018 cm−2, multilayered oxide striations appear in the as-implanted wafer. These striations grow into multiple buried oxide layers after annealing at 1150 °C. The multiple layers lead to a discontinuous buried oxide layer, resulting in the formation of a number of Si micropaths between the top Si layer and the Si substrate when the wafer is annealed at 1350 °C. These Si paths cause the breakdown electric field strength of the buried oxide layer to deteriorate. With doses of 0.2 × 1018-0.3 × 1018 cm−2 and of higher than 1.3 × 1018 cm−2, an extremely high density of threading dislocations is generated in the top Si layer after annealing at 1350 °C. The dislocation density is greatly reduced to less than 103 cm−2 when the oxygen dose falls in the range of 0.35 × 1018-1.2 × 1018 cm−2. Here we propose a mechanism that accounts for the threading dislocation generation at substoichiometric oxygen doses of less than 1.2 × 1018 cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Izumi, M. Doken, and H. Ariyoshi, Electron. Lett. 14 (18), 593 (1978).

    Article  CAS  Google Scholar 

  2. Y. Omura and K. Izumi, Proc. of the 4th Int. Symp. on Silicon-On-Insulator Technol. and Devices (The Electrochemical Society, 1990), p. 509.

  3. T. Ohno, S. Matsumoto, and K. Izumi, Electron. Lett. 25 (16), 1071 (1989).

    Article  Google Scholar 

  4. T. W. Houston, H. Lu, P. Mei, T. G. W. Blake, L. R. Blake, L. R. Hite, R. Sundaresan, M. Matloubian, W. E. Baily, J. Lui, A. Peterson, and G. Pollack, IEEE SOS/SOI Technol. Conf. Proc, 137 (1989).

  5. J. P. Colinge, Electron. Lett. 22 (4), 187 (1985).

    Article  Google Scholar 

  6. S. Nakashima and K. Izumi, Electron. Lett. 26 (20), 1647 (1990).

    Article  Google Scholar 

  7. D. Hill, P. Fraundorf, and G. Fraundorf, J. Appl. Phys. 63 (10), 4993 (1988).

    Article  Google Scholar 

  8. A. H. van Ommen, H. J. Ligthart, J. Politiek, and M. P. A. Viegers, in Materials Modification and Growth Using Ion Beams, edited by U. Gibson, A. E. White, and P. P. Pronko (Mater. Res. Soc. Symp. Proc. 93, Pittsburgh, PA, 1987), p. 119.

  9. Y. Omura, S. Nakashima, K. Izumi, and T. Ishii, IEEE IEDM Tech. Dig., 675 (1991).

  10. J. P. Ruffell, D. H. Douglas-Hamilton, R. E. Kaim, and K. Izumi, Nucl. Instrum. Methods B21, 229 (1987).

    Article  CAS  Google Scholar 

  11. H. W. Lam, R. F. Pinizzotto, H. T. Yuan, and D. W. Bellavance, Electron. Lett. 17 (10), 356 (1981).

    Article  CAS  Google Scholar 

  12. S. Nakashima and K. Izumi, J. Mater. Res. 5, 1918 (1990).

    Article  CAS  Google Scholar 

  13. J. Stoemenos, J. Margail, C. Jaussaud, M. Dupuy, and M. Bruel, Appl. Phys. Lett. 48 (21), 1470 (1986).

    Article  CAS  Google Scholar 

  14. M. K. El-Ghor, S. J. Pennycook, T. P. Sjoreen, and J. Narayan, in Beam-Solid Interactions and Transient Processes, edited by M. O. Thompson, S. T. Picraux, and J. S. Williams (Mater. Res. Soc. Symp. Proc. 74, Pittsburgh, PA, 1987), p. 591.

  15. K. J. Reeson, A. K. Robinson, P. L. F. Hemment, C. D. Marsh, K. N. Christensen, G. R. Booker, R. J. Charter, K. J. Kilner, G. Harbeke, E. F. Steigmeir, and G. K. Celler, Microelectron. Eng. 8, 163 (1988).

    Article  CAS  Google Scholar 

  16. J. Stoemenos, K. J. Reeson, A.K. Robinson, and P. L. F. Hemment, J. Appl. Phys. 69 (2), 793 (1991).

    Article  CAS  Google Scholar 

  17. S. Visitserngtrakul, C. O. Jung, T. S. Ravi, B. Cordts, D. E. Burke, and S. J. Krause, in Microscopy of Semiconducting Materials 1989, edited by A. G. Cullis and J. L. Hutchison (Inst. Phys. Conf. Ser. No. 100, 1989), p. 557.

  18. S. Visitserngtrakul and S. J. Krause, J. Appl. Phys. 69 (3), 1784 (1991).

    Article  CAS  Google Scholar 

  19. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985), Vol. 1.

  20. J. F. Gibbons, W. S. Johnson, and S. W. Mylroie, Projected Range Statistics (John Wiley and Sons Inc., New York, 1975).

  21. S. M. Sze, Physics of Semiconductor Devices (John Wiley and Sons Inc., New York, 1981).

  22. A. E. White, K. T. Short, J. L. Batstone, D. C. Jacobson, J. M. Poate, and K. W. West, Appl. Phys. Lett. 50 (1), 19 (1987).

    Article  CAS  Google Scholar 

  23. Y. Takano, H. Kozuka, M. Ogino, and M. Maki, in Semiconductor Silicon, edited by H. R. Huff, R. J. Kriegler, and Y. Kakeishi (Electrochemical Society, 1981), p. 743.

  24. J. Burke, The Kinetics of Phase Transformation in Metals (Pergamon Press, New York, 1965).

  25. S. J. Krause, C. O. Jung, M. E. Burnham, and S. R. Wilson, in Microscopy of Semiconducting Materials 1987, edited by A. G. Cullis and P. D. Augustus, Inst. Phys. Conf. Ser. No. 87, 391 (1987).

    CAS  Google Scholar 

  26. J. Stoemenos, Thin Solid Films 135, 114 (1986).

    Article  Google Scholar 

  27. S. J. Krause, C. O. Jung, T. S. Ravi, S. R. Wilson, and D. E. Burke, in Silicon-on-Insulator and Buried Metals in Semiconductors, edited by J. C. Sturm, C. K. Chen, L. Pfeiffer, and P. L. F. Hemment (Mater. Res. Soc. Symp. Proc. 107, Pittsburgh, PA, 1988), p. 93.

  28. A. Yoshino, K. Kasama, and M. Sakamoto, Nucl. Instrum. Methods B39, 203 (1989).

    Article  CAS  Google Scholar 

  29. C. Jaussaud, J. Stoemenos, J. Margail, M. Dupuy, B. Blanchard, and M. Bruel, Appl. Phys. Lett. 46 (11), 1064 (1985).

    Article  CAS  Google Scholar 

  30. P. L. F. Hemment, K. J. Reeson, J. A. Kilner, R. J. Chater, C. Marsh, G. R. Booker, G. K. Celler, and J. Stoemenos, Vacuum 36 (11/12), 877 (1986).

  31. G. K. Celler, P. L. F. Hemment, K. W. West, and J. M. Gibson, Appl. Phys. Lett. 48 (8), 532 (1986).

    Article  CAS  Google Scholar 

  32. M. F. Ashby and L. Johnson, Philos. Mag. 20, 1009 (1969).

    Article  CAS  Google Scholar 

  33. C. Jaussaud, J. Margail, J. Stoemenos, and M. Bruel, in Silicon-on-Insulator and Buried Metals in Semiconductors, edited by J. C. Sturm, C. K. Chen, L. Pfeiffer, and P. L. F. Hemment (Mater. Res. Soc. Symp. Proc. 107, Pittsburgh, PA, 1988), p. 17.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakashima, S., Izumi, K. Analysis of buried oxide layer formation and mechanism of threading dislocation generation in the substoichiometric oxygen dose region. Journal of Materials Research 8, 523–534 (1993). https://doi.org/10.1557/JMR.1993.0523

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1993.0523

Navigation