Skip to main content
Log in

Morphological instabilities in the low pressure synthesis of diamond

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Morphological instabilities attending the high growth rate of diamond films are examined. Pertinent literature on morphological instabilities and microstructure evolution in vapor deposited films is reviewed and theoretical treatments related to the case of diamond growth are discussed. Diamond films of various thicknesses have been synthesized utilizing the combustion flame synthesis technique involving diamond growth rates of ∼1 μm/min. Films of thicknesses under 20 μm are found to be dense and the surface smoothness of such films is governed by facets on the individual crystallites that make up the film. Increasing film thicknesses, at high growth rates, results in extremely rough surfaces, the trapping of voids and discontinuities, and the incorporation of non-diamond phases in the growing film. These characteristics are typical of morphological instabilities when surface diffusion and re-evaporation processes are absent and instability is promoted by the high rate arrival of the appropriate species from the flame ambient to the surface. Factors contributing to morphological instabilities include competitive shadowing and nutrient starvation and growth anisotropy of the different crystallographic faces on individual diamond crystals. It is shown that surface temperature and the presence of oxidizing species in the flame ambient contribute to anisotropic growth of diamond crystals and hence to morphological instabilities in diamond films. An approach to avoiding these instabilities is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Μ. Kamo, Y. Sato, S. Matsumoto, and N. Setaka, J. Cryst. Growth 62, 642 (1983).

    Article  CAS  Google Scholar 

  2. Μ. Peters, J. M. Pinneo, L. S. Plano, K. V. Ravi, V. Versteeg, and S. Yokota, SPIE Proceedings 877, 79 (1988).

    Article  CAS  Google Scholar 

  3. S. Matsumoto, Y. Sato, M. Kamo, and N. Setaka, Jpn. J. Appl. Phys. 21, L183.1 (1982).

    Google Scholar 

  4. N. Ohtake, H. Tokura, Y. Kuriyama, Y. Mashimo, and M. Yoshikawa, Proc. 1st Int. Symp. on Diamond and Diamond Like-Films, The Electrochemical Society, 93 (1989).

  5. Y. Hirose, S. Amanuma, N. Okada, and K. Komaki, Proc. 1st Int. Symp. on Diamond and Diamond-Like Films, The Electrochemical Society, 80 (1989).

  6. K. V. Ravi, A. Joshi, and H. S. Hu, Proc. 2nd Int. Conf. on The New Diamond Science and Technology, Washington, DC, 391 (1990).

  7. D. W. Schaefer, Science 243, 1023 (1989).

    Article  CAS  Google Scholar 

  8. C. H. J. van den Brekel and A. K. Jansen, J. Cryst. Growth 43, 364 (1978).

    Article  Google Scholar 

  9. B. J. Palmer and R. G. Gordon, Thin Solid Films 158, 313 (1988).

    Article  Google Scholar 

  10. J. W. Mullins, J. Appl. Phys. 28, 333 (1957).

    Article  CAS  Google Scholar 

  11. J. Bernholc, A. Antonelle, and S. T. Pantelides, SDIO/IST Diamond Technology Initiative Symposium, Arlingtpn, VA (July 1988).

  12. H. Siethoff and W. Schroeter, Philos. Mag. A 37, 711 (1978).

    Article  CAS  Google Scholar 

  13. J. M. Fairfield and B. J. Masters, J. Appl. Phys. 38, 3184 (1967).

    Article  Google Scholar 

  14. G. D. Watkins, J. R. Troxell, and A. P. Chatterje, Proc. Int. Conf. Radiation Effects in Semiconductors, Nice, edited by J. H. Albany, 16 (1979).

  15. A. Joshi and R. Nimmagadda, J. Mater. Res. 6, 1484 (1991).

    Article  CAS  Google Scholar 

  16. G. S. Bales, R. Bruinsma, E. A. Eklund, R. P. U. Karunasari, J. Rudnick, and A. Zangwill, Science 249, 264 (1990).

    Article  CAS  Google Scholar 

  17. A. Mazor, D. J. Srolovitz, P. S. Hagan, and B. G. Bukiet, Phys. Rev. Lett. 60, 424 (1988).

    Article  CAS  Google Scholar 

  18. R. P. Karunasari, R. Bruinsma, and J. Rudnick, Phys. Rev. Lett. 62, 788 (1989).

    Article  Google Scholar 

  19. G. S. Bales, A. C. Redfield, and A. Zangwill, Phys. Rev. Lett. 62, 776 (1989).

    Article  CAS  Google Scholar 

  20. K. V. Ravi and C. A. Koch, Appl. Phys. Lett. 57, 348 (1990).

    Article  CAS  Google Scholar 

  21. K. V. Ravi, C. A. Koch, H. S. Hu, and A. Joshi, J. Mater. Res. 5, 2356 (1990).

    Article  CAS  Google Scholar 

  22. J. S. Kim, M. H. Kim, S. S. Park, and J. Y. Lee, J. Appl. Phys. 67, 3354 (1990).

    Article  CAS  Google Scholar 

  23. K. V. Ravi and A. Joshi, Appl. Phys. Lett. 58, 246 (1991).

    Article  CAS  Google Scholar 

  24. Y. Matsui, A. Yuuki, M. Sahara, and Y. Hirose, Jpn. J. Appl. Phys. 28, 1718 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravi, K.V. Morphological instabilities in the low pressure synthesis of diamond. Journal of Materials Research 7, 384–393 (1992). https://doi.org/10.1557/JMR.1992.0384

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1992.0384

Navigation