Skip to main content
Log in

Production of hydroxyapatite-glass compacts by hydrothermal hot-pressing technique

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Low-temperature sintering (under 350°C) of hydroxyapatite was attempted by a hydrothermal hot-pressing technique. The effects of borosilicate glass addition on the characteristics of the solidified body (mechanical strength, microstructure, crystal structure, pore distribution, etc.) and on the densification process during hydrothermal reaction were investigated. The borosilicate glass increased the mechanical strength of the solidified body; compression of 50% content of apatite was 2100 kg/cm2. It is also shown that water acts as a good catalyzer during solidification under hydrothermal conditions, and micropores can increase toughness of the solidified body due to the adsorption of stress. These hydrothermal hot-pressing solidification processes are so similar to sintering with liquid phase under pressure that the initial kinetics was discussed by means of the velocity measurement of shrinkage rate. In addition, these reactions may proceed in water, and are then discussed from the point of view of a heterogeneous reaction between powder and aqueous solution. It was proposed that the solidification process was due to viscous flow with rearrangement of grains in the solidified body, and the rate-determining step followed a core model of extraction from solid to solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Aoki, Seramikks 10, 469 (1975).

    CAS  Google Scholar 

  2. T. Hidaka and Y. Hirayama, Ceramics 17, 619 (1982).

    Google Scholar 

  3. H. Momma and T. Kanazawa, Nippon Kagaku Kaishi, 339 (1972).

  4. H. Momma and T. Kanazawa, Yogyo Kyokaishi 86, 72 (1978).

    Article  Google Scholar 

  5. H. Momma, S. Ueno, and T. Kanazawa, J. Chem. Tech. Biotechnol. 31, 15 (1981).

    Google Scholar 

  6. D. M. Roy and S. K. Linnehan, Nature 247, 220 (1974).

    Article  CAS  Google Scholar 

  7. W. R. Rao and R. F. Boehm, J. Dent. Res. 53, 1351 (1974).

    Article  CAS  Google Scholar 

  8. J. G. J. Peelen, B. V. Reida, and J. P. W. Vermeiden, Philips Tech. Rev. 37, 234 (1977).

    CAS  Google Scholar 

  9. K. Ioku, M. Yoshimura, and S. Somiya, J. Ceram. Soc. Jpn. 96, 109 (1988).

    Article  CAS  Google Scholar 

  10. T. Kokubo, S. Ito, M. Shigematsu, S. Sakka, and T. Yamamura, J. Mater. Sci. 20, 2001 (1985).

    Article  CAS  Google Scholar 

  11. T. Kokubo, S. Ito, and S. Sakka, J. Mater. Sci. 21, 536 (1986).

    Article  CAS  Google Scholar 

  12. E. C. Moreno, T. M. Gregory, and W. E. Brown, J. Res. Natl. Bur. Stand. 72A, 773 (1968).

    Article  CAS  Google Scholar 

  13. A. Atkinson, P. A. Bramdford, and I. P. Selmes, J. Appl. Chem. Biotechnol. 23, 517 (1973).

    Article  CAS  Google Scholar 

  14. S. Matsuno and T, Tsukakoshi, Sekko to Sekkai 165, 53 (1980).

    CAS  Google Scholar 

  15. H. Aoki and K. Kato, Shirikoshi 14, 36 (1973).

    Google Scholar 

  16. H. Momma, S. Ueno, and M. Tsutsumi, Sekko to Sekkai 156, 6 (1978).

    Google Scholar 

  17. B. O. Fowler, Inorgan. Chem. 13, 194 (1974).

    Article  CAS  Google Scholar 

  18. B.O. Fowler, Inorgan. Chem. 13, 207 (1974).

    Article  CAS  Google Scholar 

  19. N. Yamasaki, K. Yanagisawa, S. Kanahara, M. Nishioka, K. Matsuoka, and J. Yamazaki, J. Nucl. Sci. Technol. 21, 71 (1984).

    Article  CAS  Google Scholar 

  20. K. Yanagisawa, S. Kanahara, M. Nishioka, and N. Yamasaki, J. Nucl. Sci. Technol. 21, 558 (1984).

    Article  CAS  Google Scholar 

  21. K. Yanagisawa, M. Nishioka, and N. Yamasaki, J. Am. Ceram. Soc. Bull. 64, 1563 (1985).

    CAS  Google Scholar 

  22. N. Yamasaki, M. Nishioka, K. Yanagisawa, and S. Kanahara, Yogyo-Kyokai-shi 93, 151 (1985).

    Article  CAS  Google Scholar 

  23. K. Yanagisawa, M. Nishioka, and N. Yamasaki, J. Nucl. Sci. Technol. 23, 550 (1986).

    Article  CAS  Google Scholar 

  24. M. Nishioka, K. Yanagisawa, and N. Yamasaki, Yogyo-Kyokai-shi 94, 1119 (1986).

    Article  CAS  Google Scholar 

  25. N. Yamasaki, K. Yanagisawa, M. Nishioka, and S. Kanahara, J. Mater. Sci. Lett. 5, 355 (1986).

    Article  Google Scholar 

  26. N. Yamasaki, K. Yanagisawa, and M. Nishioka, J. At. Energy Soc. Jpn. 28, 266 (1986).

    Article  CAS  Google Scholar 

  27. K. Yanagisawa, M. Nishioka, and N. Yamasaki, J. Nucl. Sci. Technol. 24, 51 (1987).

    Article  CAS  Google Scholar 

  28. N. Yamasaki, M. Nishioka, and K. Yanagisawa, I. At. Energy Soc. Jpn. 30, 815 (1988).

    Article  CAS  Google Scholar 

  29. D. L. Phinney, F. J. Ryerson, V. M. Oversby, W. A. Lanford, R. D. Aines, and J. K. Bates, Mater. Res. Symp. Proc. 84, 433 (1987).

    Article  CAS  Google Scholar 

  30. T. A. Abrajano, Jr. and J. K. Bates, Mater. Res. Symp. Proc. 84, 533 (1987).

    Article  CAS  Google Scholar 

  31. R. D. Aines, H. C. Weed, and J. K. Bates, Mater. Res. Symp. Proc. 84, 547 (1987).

    Article  CAS  Google Scholar 

  32. J. K. Bates and T. J. Gerding, Mater. Res. Symp. Proc. 112, 651 (1988).

    Article  CAS  Google Scholar 

  33. W. D. Kingery and M. D. Narasimhan, J. Appl. Phys. 30, 307 (1959).

    Article  CAS  Google Scholar 

  34. P. Murray, E. P. Rodgers, and A. E. Williams, Trans. Brit. Ceram. Soc. 53, 474 (1954).

    CAS  Google Scholar 

  35. R. Kondo, K. Lee, and M. Daimon, Yogyo-Kyokai-shi 84, 573 (1976).

    Article  CAS  Google Scholar 

  36. W. M. McKewan, Trans. TMS-AIME, 212, 791 (1958); 218, 2 (1960).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamasaki, N., Yanagisawa, K. & Kakiuchi, N. Production of hydroxyapatite-glass compacts by hydrothermal hot-pressing technique. Journal of Materials Research 5, 647–653 (1990). https://doi.org/10.1557/JMR.1990.0647

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.0647

Navigation