Skip to main content
Log in

The molecular wedge in a brittle crack: A simulation of mica/water

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This paper presents an atomic calculation of the wedging effect which occurs in a brittle crack when molecules of a chemisorbing species of molecules of sufficient size enter the crack mouth. A surface tension develops at the tip of the wedge caused by the difference between the covered and vacuum surface energies. This force draws the chemisorbing molecules toward the crack tip and distorts the crack faces, causing, in turn, a compensating elastic force on the molecules which tends to eject the molecules. We calculate the equilibrium penetration of the wedging molecules and the configuration of the crack and wedge by an atomistic calculation. We simulate mica/water chemistry by means of a simplification of the mica lattice and calculate interactions between the water and mica on the basis of Born–Mayer. Water is found to form a wedge tongue of two or three molecular thicknesses and a length of about 20 molecular distances, which penetrates into the crack tip cohesive zone. When strong wedging action occurs at a crack tip, crack advance near threshold loadings will be limited by molecular diffusion through the wedge tongue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Wiederhorn, E. R. Fuller, and R. Thomson, Metal Science 14, 450 (1980).

    Article  CAS  Google Scholar 

  2. B.R. Lawn, Appl. Phys. Lett. 47, 809 (1985).

    Article  CAS  Google Scholar 

  3. B. R. Lawn, D. H. Roach, and R. M. Thomson, J. Mater. Sci. 22, 4036 (1987).

    Article  Google Scholar 

  4. D.Y. C. Chan and R. G. Horn, J. Chem. Phys. 83, 5311 (1985).

    Article  CAS  Google Scholar 

  5. R. M. Thomson, Scripta Metall. 22, 385 (1988).

    Article  CAS  Google Scholar 

  6. R. M. Thomson, V. K. Tewary, and J. Masuda-Jindo, J. Mater. Res. 2, 619 (1987).

    Article  CAS  Google Scholar 

  7. K-T. Wan, N. Aimard, S. Lathabai, R. G. Horn, and B. R. Lawn, J. Mater. Res. 5 (1), 172 (1990).

    Article  CAS  Google Scholar 

  8. M. Tosi, Solid State Phys., edited by F. Seitz and D. Turnbull, 16, 1 (1964).

  9. G. L. Gaines and D. Tabor, Nature 178, 1304 (1956).

    Article  CAS  Google Scholar 

  10. R. F. Geise, Jr., Nature 248, 580 (1974).

    Article  Google Scholar 

  11. G. Trott, P. L. Gutshall, and J. M. Phillips, Int. Vac. Cong., Proc. 3rd Int. Conf. Solid Surf. (1977), Vienna.

  12. G. I. Baranblatt, Adv. Appl. Math. 7, 55 (1962).

    Google Scholar 

  13. W. W. Jackson and J. West, Z. Kryst. 76, 211 (1930).

    CAS  Google Scholar 

  14. W. W. Jackson and J. West, Z. Kryst. 85, 160 (1933).

    CAS  Google Scholar 

  15. E. W. Radoslovich, Acta Cryst. 13, 919 (1959).

    Article  Google Scholar 

  16. P. A. Thiel and T. E. Madey, Surf. Sci. Rpts. 7, 211 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomson, R. The molecular wedge in a brittle crack: A simulation of mica/water. Journal of Materials Research 5, 524–534 (1990). https://doi.org/10.1557/JMR.1990.0524

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.0524

Navigation