Skip to main content
Log in

Hydrogen-alkali-metal-graphite ternary intercalation compounds

  • Commentaries and Reviews
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Alkali-metal-graphite intercalation compounds (alkali-metal-GIC’s) absorb hydrogen in two ways: physisorption and chemisorption. Hydrogen uptake through the physisorption process occurs at low temperatures below about 200 K in higher stage alkali-metal-GIC’s, where hydrogen molecules are stabilized to form a two-dimensional condensed phase in the galleries of the graphite sheets. The concentration of absorbed hydrogen molecules is saturated at a rate of H2/alkali metal atom ∼2. The hydrogen physisorption shows a strong isotope effect and a swelling effect on c-axis lattice expansion. In the case of hydrogen uptake through the chemisorption process, dissociated hydrogen species are stabilized in the intercalate spaces. The activity of the chemisorption increases in the order Cs < Rb < K. The introduction of hydrogen generates a charge transfer from the host alkali metal GIC’s to the hydrogen since hydrogen has strong electron affinity. The hydrogenated potassium-GIC’s have intercalates consisting of K+-H-K+ triple atomic layer sandwiches which are inserted between metallic graphite sheets. The inserted two-dimensional hydrogen layer is suggested to consist of H ions with a weakly metallic nature. The superconductivity of the hydrogenated potassium-GIC is also discussed in terms of the change in the electronic and lattice dynamical properties by hydrogen uptake. The hydrogen-absorption in alkali-metal-GIC’s is an interesting phenomenon in comparison with that in transition metal hydrides from the point of hydrogen storage. The hydrogen-alkali-metal-ternary GIC’s obtained from hydrogen absorption have novel electronic properties and lattice structures which provide attractive problems for GIC research. The studies of hydrogen-alkali-metal ternary GIC’s are reviewed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Kondow, H. Inokuchi, and N. Wakayama, J. Chem. Phys. 43, 3766 (1965).

    Article  Google Scholar 

  2. H. Inokuchi, N. Wakayama, T. Kondow, and Y. Mori, J. Chem. Phys. 46, 837 (1967).

    Article  CAS  Google Scholar 

  3. N. Wakayama, Y. Mori, and H. Inokuchi, J. Catal. 12, 15 (1968).

    Article  CAS  Google Scholar 

  4. K. Kimura and H. Inokuchi, J. Catal. 29, 49 (1973).

    Article  CAS  Google Scholar 

  5. T. Enoki and H. Inokuchi, J. Chem. Phys. 74, 6440 (1981).

    Article  CAS  Google Scholar 

  6. D. Saehr and A. Hérold, Bull. Soc. Chim. Fr. 3130 (1965).

  7. M. Colin and A. Hérold, Bull. Soc. Chim. Fr. 1982 (1971).

  8. P. Lagrange, A. Metrot, and A. Hérold, C. R. Acad. Sc. Paris C278, 701 (1974).

    Google Scholar 

  9. G. Furdin, P. Portmann, A. Hérold, and C. Zeller, C. R. Acad. Sc. Paris C282, 563 (1976).

    Google Scholar 

  10. P. Lagrange, M-H. Portmann, and A. Herold, C. R. Acad. Sc. Paris C283, 557 (1976).

    Google Scholar 

  11. K. Watanabe, M. Soma, T. Onishi, and K. Tamaru, Nature, Phys. Sci. 233, 160 (1971).

    Article  CAS  Google Scholar 

  12. K. Watanabe, T. Kondow, T. Onishi, and K. Tamaru, Chem. Lett. 477 (1972).

  13. K. Watanabe, T. Kondow, M. Soma, T. Onishi, and K. Tamaru, Proc. R. Soc. London A333, 51 (1973).

    Google Scholar 

  14. P. Lagrange, A. Metrot, and A. Herold, C. R. Acad. Sc. Paris C275, 765 (1972).

    Google Scholar 

  15. P. Lagrange and A. Herold, C. R. Acad. Sc. Paris C281, 381 (1975).

    Google Scholar 

  16. P. Lagrange, M-H. Portmann, and A. Herold, C. R. Acad. Sc. Paris C283, 511 (1976).

    Google Scholar 

  17. G. Alefeld and J. Volkl, Hydrogen in Metals (Springer, Berlin, (1978).

    Book  Google Scholar 

  18. J. B. Hastings, W. B. Ellenson, and J. E. Fischer, Phys. Rev. Lett. 42, 1552 (1979).

    Article  CAS  Google Scholar 

  19. H. Zabel, S. C. Moss, N. Caswell, and S. A. Solin, Phys. Rev. Lett. 43, 2022 (1979).

    Article  CAS  Google Scholar 

  20. M. Suzuki, H. Ikeda, H. Suematsu, Y. Endo, H. Shiba, and M. T. Hutchings, J. Phys. Soc. Jpn. 49, 671 (1980).

    Article  CAS  Google Scholar 

  21. R. Clarke, N. Caswell, S. A. Solin, and P. M. Horn, Phys. Rev. Lett. 43, 2018 (1979).

    Article  CAS  Google Scholar 

  22. R. Clarke, N. Caswell, S.A. Solin, and P. M. Horn, Physica (Utrecht) 99B, 457 (1980).

    Google Scholar 

  23. T. Terai and Y. Takahashi, Synth. Metals 7, 49 (1983).

    Article  CAS  Google Scholar 

  24. G. L. Doll, P. C. Eklund, and G. Senatore, Extended Abstracts, Fall Meeting of the Materials Research Society, Boston, MA, 66 (1986).

    Google Scholar 

  25. T. Terai and Y. Takahashi, Carbon 22, 91 (1984).

    Article  CAS  Google Scholar 

  26. J. P. Beaufils, T. Crowley, T. Rayment, R. K. Thomas, and J. W. White, Mol. Phys. 44, 1257 (1981).

    Article  CAS  Google Scholar 

  27. H. Zabel, J. J. Rush, and A. Magerl, Synth. Metals 7, 251 (1983).

    Article  CAS  Google Scholar 

  28. D. Smith, J. Chem. Phys. 68, 3222 (1978).

    Article  CAS  Google Scholar 

  29. N. Kambe, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B21, 3491 (1980).

    Article  Google Scholar 

  30. R. Clarke, J. N. Gray, H. Homma, and M. J. Winokur, Phys. Rev. B24, 1407 (1981).

    Google Scholar 

  31. M. Suzuki and H. Suematsu, J. Phys. Soc. Jpn. 52, 2761 (1983).

    Article  CAS  Google Scholar 

  32. Y. Yamada and I. Naiki, J. Phys. Soc. Jpn. 51, 2174 (1982).

    Article  CAS  Google Scholar 

  33. M. Mori, S. C. Moss, Y. M. Jan, and H. Zabel, Phys. Rev. B25, 1287 (1982).

    Article  Google Scholar 

  34. T. Kondow, K. Ando, and Y. Tomono, Proc. of an Int. Conf. on Physics of Intercalation Compounds, Trieste, Italy, July 6–10, 1981 (Springer-Verlag, Berlin), p. 315.

  35. T. Terai, Y. Nonaka, M. Ohira, and Y. Takahashi, Synth. Metals 12, 219 (1985).

    Article  CAS  Google Scholar 

  36. T. Kondow and U. Mizutani, Synth. Metals 6, 141 (1983).

    Article  CAS  Google Scholar 

  37. T. Kondow, M. Sagawa, T. Takeyama, Y. Tomono, K. Andow, and U. Mizutani, Synth. Metals 12, 213 (1985).

    Article  CAS  Google Scholar 

  38. I. Kanazawa, H. Murakami, Y. Sakurai, M. Sano, T. Enoki, and H. Inokuchi, Synth. Metals 12, 225 (1985).

    Article  CAS  Google Scholar 

  39. M. Sano, I. Kanazawa, H. Murakami, Y. Sakurai, T. Enoki, and H. Inokuchi, Chem. Phys. Lett. 122, 143 (1985).

    Article  CAS  Google Scholar 

  40. A. Hérold and D. Saehr, C. R. Acad. Sc. Paris C250, 545 (1960).

    Google Scholar 

  41. M. Colin and A. Hérold, C. R. Acad. Sc. Paris C269, 1302 (1969).

    Google Scholar 

  42. A. Hérold and P. Lagrange, Mater. Sci. Engr. 31, 33 (1977).

    Article  Google Scholar 

  43. D. Guérard, C. Takoudjou, and F. Rousseaux, Synth. Metals 7, 43 (1983).

    Article  Google Scholar 

  44. M. Sano, H. Nishimura, and K. Ichimura, Synth. Metals 30, 73 (1989).

    Article  Google Scholar 

  45. M. Sano, T. Enoki, and H. Inokuchi, unpublished research.

  46. D. Guérard, N. E. Elalem, and C. Takoudjou, Synth. Metals 12, 195 (1985).

    Article  Google Scholar 

  47. P. Lagrange and A. Hérold, Carbon 16, 235 (1978).

    Article  CAS  Google Scholar 

  48. T. Trewern, R. K. Thomas, G. Naylor, and J. W. White, J. Chem. Soc. Faraday Trans. 1, 78, 2369 (1982).

    Google Scholar 

  49. J.P. Beaufils, T. Trewern, R. K. Thomas, and J. W. White, J. Chem. Soc. Faraday Trans. 1, 78, 2387 (1982).

    Google Scholar 

  50. T. Trewern, R. K. Thomas, and J. W. White, J. Chem. Soc. Faraday Trans. 1, 78, 2399 (1982).

    Google Scholar 

  51. W. K. Kamitakahara, G. L. Doll, and P. C. Eklund, Extended Abstracts, Fall Meeting of The Materials Research Society, Boston, MA, 69 (1986).

    Google Scholar 

  52. L. Salamanca-Riba, N-C. Yeh, M. S. Dresselhaus, M. Endo, and T. Enoki, J. Mater. Res. 1, 177 (1986).

    Article  CAS  Google Scholar 

  53. S. Miyajima, T. Chiba, T. Enoki, H. Inokuchi, and M. Sano, Phys. Rev. B37, 3246 (1988).

    Article  Google Scholar 

  54. S. Miyajima, M. Kabasawa, T. Chiba, T. Enoki, and H. Inokuchi, Phys. Rev. Lett. (1989) (in press).

  55. T. Enoki, M. Sano, and H. Inokuchi, Phys. Rev. B32, 2497 (1985).

    Article  Google Scholar 

  56. T. Enoki, M. Sano, and H. Inokuchi, Synth. Metals 12, 207 (1985).

    Article  CAS  Google Scholar 

  57. T. Enoki, N-C. Yeh, S-T. Chen, and M. S. Dresselhaus, Phys. Rev. B33, 1292 (1986).

    Article  Google Scholar 

  58. H. Murakami, M. Sano, I. Kanazawa, T. Enoki, T. Kurihara, Y. Sakurai, and H. Inokuchi, J. Chem. Phys. 85, 4728 (1985).

    Article  Google Scholar 

  59. I. Kanazawa, M. Sano, T. Enoki, H. Murakami, Y. Sakurai, and H. Inokuchi, Synth. Metals 12, 225 (1985).

    Article  CAS  Google Scholar 

  60. N-C. Yeh, K. Sugihara, M. S. Dresselhaus, and G. Dresselhaus, Phys. Rev. B38, 12615 (1988).

    Article  Google Scholar 

  61. J. Conard, H. Estrade-Szwarckopf, P. Lauginie, M. El Makrini, P. Lagrange, and D. Guerard, Synth. Metals 2, 261 (1980).

    Article  CAS  Google Scholar 

  62. J. Conard, H. Estrade-Szwarckopf, P. Lauginie, M. El Makrini, P. Lagrange, and D. Guerard, Physica 105B, 290 (1981).

    Google Scholar 

  63. T. Enoki, H. Inokuchi, and M. Sano, Chem. Phys. Lett. 86, 285 (1982).

    Article  CAS  Google Scholar 

  64. T. Enoki, M. Sano, and H. Inokuchi, J. Chem. Phys. 78, 2017 (1983).

    Article  CAS  Google Scholar 

  65. T. Enoki, H. Inokuchi, and M. Sano, Phys. Rev. B37, 9163 (1988).

    Article  Google Scholar 

  66. M. Sano and H. Inokuchi, Chem. Lett. 405 (1979).

  67. T. Enoki, K. Imaeda, H. Inokuchi, and M. Sano, Phys. Rev. B35, 9399 (1987).

    Article  Google Scholar 

  68. L. B. Ebert and L. Matty, Synth. Metals 4, 345 (1982).

    Article  CAS  Google Scholar 

  69. K. Nomura, T. Saito, and K. Kume, Solid State Commun. 63, 1059 (1987).

    Article  CAS  Google Scholar 

  70. T. Saito, K. Nomura, K. Mizoguchi, K. Mizuno, K. Kume, and H. Suematsu, J. Phys. Soc. Jpn. 58, 269 (1989).

    Article  CAS  Google Scholar 

  71. G. L. Doll, M. H. Yang, and P. C. Eklund, Phys. Rev. B35, 9790 (1987).

    Article  Google Scholar 

  72. U. Mizutani, T. Kondow, and T. B. Massalski, Phys. Rev. B23, 3165 (1978).

    Article  Google Scholar 

  73. M. Suganuma, T. Kondow, and U. Mizutani, Phys. Rev. B23, 706 (1981).

    Article  Google Scholar 

  74. T. Inoshita, K. Nakao, and H. Kamimura, J. Phys. Soc. Jpn. 43, 1237 (1977).

    Article  CAS  Google Scholar 

  75. T. Ohno, K. Nakao, and H. Kamimura, J. Phys. Soc. Jpn. 49, 1125 (1979).

    Article  Google Scholar 

  76. The electronic structure of C8K presented by Kamimura’s group has been revised through controversy about the presence of the alkali metal s-band. The band originating from alkali metal s-electrons shown in Fig. 20 is now considered to be an inter-layer band hybridized with alkali metal s-band existing in inter-layer space between the graphite sheets. For details, see H. Kamimura, Ann. de Phys. 11, Suppl. 2, 39 (1986).

  77. K. Sugihara (private communication).

  78. M. S. Dresselhaus and G. Dresselhaus, Adv. Phys. 30, 139 (1981).

    Article  CAS  Google Scholar 

  79. The value of fK = 0.6 may be modified, since the electronic structure of C8K has been the subject of debate now, as shown in Ref. 76.

  80. G. Dresselhaus and S. Y. Leung, Solid State Commun. 35, 819 (1981).

    Article  Google Scholar 

  81. J. C. Slonczewski and P. R. Weiss, Phys. Rev. 109, 272 (1958).

    Article  CAS  Google Scholar 

  82. J. W. McClure, Phys. Rev. 104, 666 (1957).

    Article  Google Scholar 

  83. J. W. McClure, Phys. Rev. 108, 612 (1960).

    Article  Google Scholar 

  84. G. Timp, T. C. Chieu, P. D. Dresselhaus, and G. Dresselhaus, Phys. Rev. B29, 6940 (1984).

    Article  Google Scholar 

  85. S. Tanuma, H. Suematsu, K. Higuchi, R. Inada, and Y. Onuki, Proc. of the Conf. on the Application on High Magnetic Fields in Semiconductor Physics, edited by J. F. Ryan (Clarendon, Oxford, 1978), p. 85.

    Google Scholar 

  86. G. Dresselhaus, S. Y. Leung, M. Shayegan, and T. C. Chieu, Synth. Metals 2, 321 (1980).

    Article  CAS  Google Scholar 

  87. J. Blinowski, N. H. Hau, C. Rigoux, J. P. Vieren, R. LeToullec, G. Furdin, H. Herold, and J. Melin, J. Phys. (Paris) 41, 47 (1980).

    Article  CAS  Google Scholar 

  88. T. Takahashi, H. Toukairin, and T. Sagawa (private communication).

  89. H. Yamamoto, K. Seki, T. Enoki, and H. Inokuchi, Solid State Commun. 69, 425 (1989).

    Article  CAS  Google Scholar 

  90. H. Kamimura, K. Nakao, T. Ohno, and T. Inoshita, Physica B99, 401 (1980).

    Google Scholar 

  91. Similar anomalous anisotropy in resistivity was observed also for other ternary GIC’s (alkali–metal–bismuth–graphite), E. McRae and J. F. Mareche, J. Mater. Res. 3, 75 (1988).

    Article  CAS  Google Scholar 

  92. K. Sugihara, Phys. Rev. B28, 2157 (1983).

    Article  Google Scholar 

  93. J-P. Issi, J. Boxus, B. Poulaert, H. Mazurek, and M. S. Dresselhaus, J. Phys. C14, L307 (1981).

    Google Scholar 

  94. M. Elzinga, D. T. Morelli, and C. Uher, Phys. Rev. B26, 3312 (1982).

    Article  Google Scholar 

  95. T. Enoki, S. Miyajima, M. Kabasawa, T. Chiba, H. Yamamoto, H. Inokuchi, and K. Seki, Extended Abstracts, Fall Meeting of the Materials Research Society, Boston, MA, 213 (1988).

    Google Scholar 

  96. S. Kazama and Y. Fukai, J. Phys. Soc. Jpn. 42, 119 (1977).

    Article  CAS  Google Scholar 

  97. From the experimental results of specific heat, Shubnikov-de Haas oscillations and optical reflectance, potassium is completely ionized fK = 1 except for the Shubnikov–de Haas experiment on stage-1 KH–GIC. However, c-axis resistivity shows metallic conduction, so that a more detailed discussion requires an incompletely filled cation state of potassium fK < 1 though the deviation of fK from unity is quite small. Future study is necessary to clarify this point.

  98. L. Senbetu, H. Ikezi, and C. Umrigar, Phys. Rev. B32, 750 (1985).

    Article  Google Scholar 

  99. N. A. W. Holzwarth and S. D. Had, Phys. Rev. B38, 3722 (1988).

    Article  Google Scholar 

  100. R. C. Tatar and S. Rabii, Phys. Rev. B25, 4126 (1982).

    Article  Google Scholar 

  101. R. F. Willis, B. Feuerbauer, and B. Fitton, Phys. Rev. B32, 8317 (1971).

    Google Scholar 

  102. T. Takahashi, H. Tokailin, and T. Sagawa, Phys. Rev. B32, 8317 (1985).

    Article  Google Scholar 

  103. CRC Handbook of Chemistry and Physics, edited by R. C. Weast (CRC Press Inc., Cranwood Parkway, Cleveland, OH, 1977).

  104. M. Karplus and R. N. Porter, Atoms and Molecules (W. A. Benjamin Inc., New York, 1970).

    Google Scholar 

  105. W. A. Goddard, III, Phys. Rev. 172, 7 (1968).

    Article  CAS  Google Scholar 

  106. J. K. Norskov, Phys. Rev. B20, 446 (1979).

    Article  Google Scholar 

  107. R. M. Nieminen, Hyperfine Intercations 8, 437 (1981).

    Article  CAS  Google Scholar 

  108. D. Guérard, P. Lagrange, A. Hérold, and F. Rousseaux, Synth. Metals 23, 421 (1988).

    Article  Google Scholar 

  109. S. Mizuno and K. Nakao, Phys. Rev. B (1989) (in press).

  110. T. Enoki, M. Sano, and H. Inokuchi, Extended Abstracts, Fall Meeting of the Materials Research Society, Boston, MA, 243 (1984).

    Google Scholar 

  111. S. Funahashi, T. Kondow, and M. Izumi, Solid State Commun. 44, 1515 (1982).

    Article  CAS  Google Scholar 

  112. C. Horie, M. Maeda, and Y. Kuramoto, Physica (Utrecht) 99B, 430 (1980).

    Google Scholar 

  113. T. Enoki, J. K. Jeszka, H. Inokuchi, and M. Sano (to be published).

  114. M. G. Alexander, D. P. Goshorn, D. Guerard, P. Lagrange, M. El Makrini, and G. Onn, Solid State Commun. 38, 103 (1981).

    Article  CAS  Google Scholar 

  115. H. J. Kim, H. Mertwoy, and J. D. Axe, Phys. Rev. B29, 5947 (1974).

    Google Scholar 

  116. H. Zabel and A. Magerl, Phys. Rev. B25, 2463 (1982).

    Article  Google Scholar 

  117. Y. Koike, H. Suematsu, K. Higuchi, and S. Tanuma, Solid State Commun. 27, 623 (1978).

    Article  CAS  Google Scholar 

  118. M. Kobayashi and I. Tsujikawa, J. Phys. Soc. Jpn. 50, 3245 (1981).

    Article  CAS  Google Scholar 

  119. M. Kobayashi, T. Enoki, H. Inokuchi, M. Sano, A. Sumiyama, Y. Oda, and H. Nagano, J. Phys. Soc. Jpn. 54, 2359 (1985).

    Article  CAS  Google Scholar 

  120. M. Sano, H. Inokuchi, M. Kobayashi, S. Kaneiwa, and I. Tsujikawa, J. Chem. Phys. 72, 3840 (1980).

    Article  CAS  Google Scholar 

  121. S. Kaneiwa, M. Kobayashi, and I. Tsujikawa, J. Phys. Soc. Jpn. 51, 2375 (1982).

    Article  CAS  Google Scholar 

  122. K. Suzuki, I. Tsujikawa, M. Kobayashi, H. Inokuchi, Y. Oda, A. Sumiyama, H. Nagano, and Y. Kimishima, Synth. Metals 12, 389 (1985).

    Article  CAS  Google Scholar 

  123. W. L. McMillan, Phys. Rev. 167, 331 (1968).

    Article  CAS  Google Scholar 

  124. Y. Takada, J. Phys. Soc. Jpn. 51, 63 (1982).

    Article  CAS  Google Scholar 

  125. R. Al-Jishi, Phys. Rev. B28, 112 (1983).

    Article  Google Scholar 

  126. A.W. Overhauser, Phys. Rev. B35, 411 (1987).

    Article  Google Scholar 

  127. M. Gupta and A. Percheron-Guegan, Chemica Scripta 28, 117 (1988).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enoki, T., Miyajima, S., Sano, M. et al. Hydrogen-alkali-metal-graphite ternary intercalation compounds. Journal of Materials Research 5, 435–466 (1990). https://doi.org/10.1557/JMR.1990.0435

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.0435

Navigation