Skip to main content
Log in

Rapidly solidified Al–Cr alloys: Crystalline and quasicrystalline phases

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Rapidly solidified Al–Cr alloys up to 20 at. % Cr were studied to delineate the extent of crystalline and quasicrystalline phase formation in these alloys in comparison with as-cast alloys by using transmission electron microscopy and x-ray diffraction technique. The icosahedral quasicrystals are observed from 7 to 15 at. % Cr alloys, while equilibrium η–Al11Cr2 phase is completely absent. Both rapid solidification and subsequent thermal decomposition studies indicate that the main competing phase is θ–Al2Cr up to 15 at. % Cr. Beyond this composition –Al4Cr is the dominant phase together with a small amount of γ4–Al7Cr3. We have shown that the electron diffraction patterns of Al–Cr quasicrystals are often associated with a diffuse intensity distribution, indicative of short-range order. The change in quasilattice constant with composition suggests the existence of structural vacancies. Further, a sudden change from coarse to ultrafine quasicrystalline grain structure in Al-7 at. % Cr alloy points to a change in nucleation mechanism from heterogeneous to homogeneous mode during the rapid solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys. Rev. Lett. 53, 1951 (1984).

    Article  CAS  Google Scholar 

  2. D. A. Lilienfeld, M. Nastasi, H. H. Johnson, D. G. Art, and J. W. Mayer, J. Mater. Res. 1, 237 (1986).

    Article  CAS  Google Scholar 

  3. P. Furrer and H. Warlimont, Mater. Sci. Eng. 28, 127 (1977).

    Article  CAS  Google Scholar 

  4. L. Bendersky, R. J. Schaefer, F. S. Biancaniello, and D. Shechtman, J. Mater. Sci. 21, 1889 (1986).

    Article  CAS  Google Scholar 

  5. R. A. Dunlap and K. Dini, Can. J. Phys. 63, 1267 (1985).

    Article  CAS  Google Scholar 

  6. R. A. Dunlap, Phys. Status Solidi A 92, K11 (1985).

    Google Scholar 

  7. A. Inoue, M. Kimura, and T. Masumoto, J. Mater. Sci. 22, 1758 (1987).

    Article  CAS  Google Scholar 

  8. A. Inoue, H. M. Kimura, and T. Masumoto, J. Mater. Sci. 22, 1864 (1987).

    Article  CAS  Google Scholar 

  9. J. C. Baker and J. W. Cahn, Solidification (ASM, Metals Park, OH, 1971), p. 23.

    Google Scholar 

  10. N. Saunders and V. G. Rivlin, Mat. Sci. and Tech. 2, 521 (1986).

    CAS  Google Scholar 

  11. P. A. Bancel, P. A. Heiney, P. W. Stephens, A. I. Goldman, and P. M. Horn, Phys. Rev. Lett. 54, 2422 (1985).

    Article  CAS  Google Scholar 

  12. L. A. Bendersky and S. D. Ridder, J. Mater. Res. 1, 405 (1986).

    Article  CAS  Google Scholar 

  13. W. Hume-Rothery and E. Anderson, Philos. Mag. 5, 383 (1960).

    Article  CAS  Google Scholar 

  14. D. Shechtman and I. Blech, Metall. Trans. A 16A, 1005 (1985).

    Article  Google Scholar 

  15. K. Chattopadhyay, S. Ranganathan, G. N. Subbanna, and N. Thangaraj, Scripta Metall. 19, 767 (1985).

    Article  CAS  Google Scholar 

  16. C. L. Henley, J. Non. Crystallogr. Solids 75, 91 (1985).

    Article  CAS  Google Scholar 

  17. V. Elser, Phys. Rev. B 32, 4891 (1985).

    Google Scholar 

  18. R. J. Schaefer, L. A. Bendersky, D. Shechtman, W. J. Boettinger, and F. S. Biancaniello, Metall. Trans. A 17A, 2117 (1986).

    Article  Google Scholar 

  19. A. J. Bradley and A. Taylor, Proc. R. Soc. 159, 56 (1937).

    CAS  Google Scholar 

  20. K. Chattopadhyay, S. Lele, N. Thangaraj, and S. Ranganathan, Acta Metall. 35, 727 (1987).

    Article  CAS  Google Scholar 

  21. M. J. Cooper, Acta Crystallogr. 13, 257 (1960).

    Article  CAS  Google Scholar 

  22. J. F. Smith and A. E. Ray, Acta Crystallogr. 10, 169 (1957).

    Article  CAS  Google Scholar 

  23. P. Ramachandrarao and G. V. S. Sastry, Pramana 25, L225 (1985).

    Article  CAS  Google Scholar 

  24. Z. Zhang, H. Q. Ye, and K. H. Kuo, Philos. Mag. A52, L49 (1985).

    Article  Google Scholar 

  25. K. H. Kuo, Key Engineering Materials 13–15, 219 (1987).

    Article  Google Scholar 

  26. K. V. Rao, J. Fidler, and M. S. Chen, Europhys. Lett. 1, 647 (1986).

    Article  CAS  Google Scholar 

  27. A. Inoue, L. Arnberg, B. Lehtinen, M. Oguchi, and T. Masumoto, Metall. Trans. A 17A, 1657 (1986).

    Article  Google Scholar 

  28. K. M. Knowles and W. M. Stobbs, J. Microsc. 146, 267 (1987).

    Article  CAS  Google Scholar 

  29. N. K. Mukhopadhyay, N. Thangaraj, K. Chattopadhyay, and S. Ranganathan, J. Mater. Res. 2, 299 (1987).

    Article  CAS  Google Scholar 

  30. F. Denoyer, G. Heger, M. Lambert, J. M. Lang, and P. Sainfort, J. Physique. 48, 1357 (1987).

    Article  CAS  Google Scholar 

  31. N. K. Mukhopadhyay, S. Ranganathan, and K. Chattopadhyay, Philos. Mag. Lett. 56, 121 (1987).

    Article  CAS  Google Scholar 

  32. C. L. Henley, Philos. Mag. Lett. 58, 87 (1988).

    Article  CAS  Google Scholar 

  33. P. J. Steinhardt, (1987) (preprint).

  34. R. de Ridder, G. Van Tendeloo, and S. Amelinckx, Acta Crystallogr. A32, 216 (1976).

    Article  Google Scholar 

  35. H. Zhang, D. H. Wang, and K. H. Kuo, Phys. Rev. 37, 6220 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swamy, V.T., Ranganathan, S. & Chattopadhyay, K. Rapidly solidified Al–Cr alloys: Crystalline and quasicrystalline phases. Journal of Materials Research 4, 539–551 (1989). https://doi.org/10.1557/JMR.1989.0539

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1989.0539

Navigation