Skip to main content
Log in

Dynamic consolidation of cubic boron nitride and its admixtures

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Cubic boron nitride (C–BN)’ powders admixed with graphite-structured boron nitride powder (g-DN), silicon carbide whisker (SCW), or silicon nitride whisker (SNW) were shock compacted to pressures up to 22 GPa. Unlike previous work with diamond and graphite [D. K. Potter and T. J. Ahrens, J. Appl. Phys. 63, 910 (1987) it was found that the addition of g-BN inhibited dynamic consolidation. Good consolidation was achieved with a 4–8 μm particle size C–BN powder admixed with 15 wt.% SNW or 20 wt.% SCW whereas a 37–44 μm particle size C–BN mixture was only poorly consolidated. Scanning electron microscopy (SEM) analysis demonstrates that SCW and SNW in the mixtures were highly deformed and indicated melt textures. A skin heating model was used to describe the physics of consolidation. Model calculations are consistent with SEM analysis images that indicate plastic deformation of SCW and SNW. Micro-Vickers hardness values as high as 50 GPa were obtained for consolidated C–BN and SNW mixtures. This compares to 21 GPa for single-crystal Al2O3 and 120 GPa for diamond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. K. Potter and T. J. Ahrens, J. Appl. Phys. 63, 910 (1987).

    Article  Google Scholar 

  2. D. K. Potter and T. J. Ahrens, Appl. Phys. Lett. 51, 317 (1987).

    Article  CAS  Google Scholar 

  3. R. A. Graham and A. B. Sawaoka, in High Pressure Explosive Processing of Ceramics, edited by R. A. Graham and B. Sawaoka (Trans. Tech. Publ. Ltd., Aedermannsdorf, Switzerland, 1987), pp. 17 and 18.

  4. W. H. Gourdin, in Ref. 3, pp. 207–227.

  5. L. Davison and R. A. Graham, Phys. Rep. 55, 255 (1979).

    Article  CAS  Google Scholar 

  6. T. J. Ahrens, N. Thadhani, A. H. Mutz, T. Vreeland, Jr., and R. B. Schwarz, in Metallurgical Application of Shock- Wave and High-Strain-Rate Phenomena, edited by L. E. Murr, K. P. Staudhammer, and M. A. Meyers (Marcel Dekker, New York, 1986), pp. 83–106.

    Google Scholar 

  7. T. J. Ahrens, D. Kostka, T. Vreeland, Jr., R. B. Schwarz, and P. Kasiraj, in Shock Waves in Condensed Matter1983, edited by J. R. Asay, R. A. Graham, and G. K. Straub (Elsevier, New York, 1984), pp. 443–446.

  8. P. Kasiraj, T. Vreeland, Jr., R. B. Schwarz, and T. J. Ahrens, Acta Metall. 32, 1235 (1984).

    Article  CAS  Google Scholar 

  9. L. E. Murr, A. W. Hare, and N. B. Eror, Nature 329, 37 (1987).

    Article  CAS  Google Scholar 

  10. T. Akashi and A. B. Sawaoka, in Ref. 3, pp. 87–118.

  11. K. Kondo, in Ref. 3, pp. 227–282.

  12. A. B. Sawaoka, E. K. Beauchamp, T. Akashi, and M. J. Carr, in Summary of Studies on Shock Compaction and Shock Modification of Ceramics, edited by A. B. Sawaoka and T. Akashi (New Mexico Institute of Mining and Technology, Socorro, NM, 1986), pp. 15–19.

  13. T. Akashi and A. B. Sawaoka, J. Mater Sci. 22, 1127 (1987).

    Article  CAS  Google Scholar 

  14. K. Ichinose, M. Wakatsuki, T. Aoki, and Y. Mead, in Proceedings of the Fourth International Conference on High Pressure1974, special issue of the Review of Physical Chemistry of Japan, edited by J. Osugi (Kawakita, Kyoto, Japan, 1975), pp. 436–440.

  15. Tateho Chemical Industries Co., Ltd., according to the data and information supplied, 1988.

  16. E. W. LaRocca and J. Pearson, Rev. Sci. Instrum. 29, 848 (1958).

    Article  Google Scholar 

  17. A. B. Sawaoka, T. Akashi, and V. F. Lotrich, in Ref. 3, pp. 51–65.

  18. T. J. Ahrens, D. Kostka, P. Kasiraj, and T. Vreeland, Jr., in Rapid Solidification Processing Principles and Technologies, III, Proceedings of the Third Conference on Rapid Solidification Processing, edited by R. Mehrabian (U.S. National Bureau of Standards, Gaithersburg, MD, 1982), pp. 672–677.

  19. W. H. Gourdin, J. Appl. Phys. 55, 172 (1984).

    Article  CAS  Google Scholar 

  20. R. B. Schwarz, P. Kasiraj, T. Vreeland, Jr., and T. J. Ahrens, Acta Metall. 32, 1243 (1984).

    Article  CAS  Google Scholar 

  21. F. P. Bundy, and R. H. Wentroff, Jr., J. Chem. Phys. 38, 1144 (1963).

    Article  CAS  Google Scholar 

  22. C. K. R. Varma, in Ref. 14, pp. 408–412.

  23. F. R. Corrigan, in High-Pressure Science and Technology, Sixth AIRAPT Conference, edited by K. D. Timmerhaus and M. S. Barber (Plenum, New York, 1977), Vol. 1, pp. 994–999.

  24. T. Soma, A. Sawaoka, and S. Saito, in Ref. 14, pp. 446–453.

  25. T. J. Ahrens, in Methods of Experimental Physics (Academic, New York, 1987), Vol. 24, Part A, pp. 185–235.

  26. R. G. McQueen, S. P. Marsh, J. W. Taylor, J. N. Fritz, and W. J. Carter, in High Velocity Impact Phenomena, edited by R. Kinslow (Academic, New York, 1970), pp. 293–417.

    Chapter  Google Scholar 

  27. LASL Shock Hugoniot Data, edited by S. P. Marsh (University of California, Berkeley, CA, 1980).

  28. Lange’s Handbook of Chemistry, edited by J. A. Dean (McGraw-Hill, New York, 1985).

    Google Scholar 

  29. F. R. Norwood, R. A. Graham, and A. Sawaoka, in Shock Waves in Condensed Matter1985, edited by Y. M. Gupta (Plenum, New York, 1988), pp. 837–842.

  30. J. A. Ven Vechen, Phys. Rev. B 7, 1479 (1973).

    Article  Google Scholar 

  31. D. C. Larsen, J. W. Adams, and R. Ruh, in Progress in Nitrogen Ceramics, Proceedings of the NATO Advanced Study Institute on Nitrogen Ceramics1981, edited by F. L. Riley (Martinus Nijhoff, The Hague, The Netherlands, 1983), pp. 695–710.

  32. I. N. Dulin and L. V. Alt’shuler, Sov. Phys. Solid State 11, 1016 (1969).

    Google Scholar 

  33. T. J. Petrovic, B. W. Olinger, and R. B. Roof, in Ref. 7, pp. 463–466.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, H., Ahrens, T.J. Dynamic consolidation of cubic boron nitride and its admixtures. Journal of Materials Research 3, 1010–1020 (1988). https://doi.org/10.1557/JMR.1988.1010

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1988.1010

Navigation