Skip to main content
Log in

Ni, Pd, and Pt on GaAs: A comparative study of interfacial structures, compositions, and reacted film morphologies

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The reactions between (100) GaAs and the near-noble metals Ni, Pd, and Pt have been investigated by application of high-resolution transmission electron microscopy (TEM), energy-dispersive analysis of x-rays in the scanning TEM and Rutherford backscattering spectrometry. Emphasis is placed on the evolution of the phase distributions, film compositions, and interface morphologies during annealing at temperatures up to 480°C. The first phase in the Ni/GaAs reaction is shown to have the nominal composition Ni3GaAs. Ternary phases of the type PdxGaAs are also found to be the dominant products of the Pd/GaAs reaction. Conversely, only binary phases result from the Pt/GaAs reaction. These observations are used to construct isothermal sections of the M-Ga-As thin-film phase diagrams. The behavior of a thin (1–2 nm) native oxide-hydrocarbon layer during the Ni/GaAs, Pd/GaAs, and Pt/GaAs reactions is also investigated. Only the Ni/GaAs reaction is noticeably impeded in some regions by this intervening layer. In contrast, the Pd/GaAs and Pt/GaAs reactions tend to mechanically disperse the native oxide layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Tersoff, J. Vac. Sci. Technol. B 3, 1157 (1985).

    Article  CAS  Google Scholar 

  2. O. F. Sankey, R. E. Allen, S-F. Ren, and J. D. Dow, in Ref. 1, p. 1162.

  3. C. B. Duke and C. Mailhiot, in Ref. 1, p. 1170.

  4. W. E. Spicer, N. Newman, T. Kendelewicz, W. G. Petro, M. D. Williams, C. E. McCants, and I. Lindau, in Ref. 1, p 1178.

  5. F. Schaffler and G. Abstreiter, in Ref. 1, p. 1184.

  6. M. M. Woodall and J. L. Freeouf, J. Vac. Sci. Technol. 2, 510 (1984).

    Article  Google Scholar 

  7. R. Ludeke, T.-C. Chiang, and T. Miller, J. Vac. Sci. Technol. 1, 581 (1983).

    Article  CAS  Google Scholar 

  8. W. T. Anderson, Jr., A. Christou, and J. E. Davey, J. Appl. Phys. 49, 2998 (1978).

    Article  CAS  Google Scholar 

  9. E. D. Marshall, W. X. Chen, C. S. Wu, S. S. Lau, and T. F. Keuch, Appl. Phys. Lett. 47, 298 (1985).

    Article  CAS  Google Scholar 

  10. S. R. Smith and J. S. Solomon, Mater. Lett. 3, 294 (1985).

    Article  CAS  Google Scholar 

  11. K. Tsutsui and S. Furukawa, J. Appl. Phys. 56, 560 (1984).

    Article  CAS  Google Scholar 

  12. T. Sands, V. G. Keramidas, R. Gronsky, and J. Washburn, Thin Solid Films 136, 105 (1986).

    Article  CAS  Google Scholar 

  13. G. Y. Robinson, Sohd-State Electron. 18, 331 (1975).

    Article  CAS  Google Scholar 

  14. T. S. Kuan, P. E. Batson, T. N. Jackson, H. Rupprecht, and E. L. Wilkie, J. Appl. Phys. 54, 6952 (1983).

    Article  CAS  Google Scholar 

  15. M. Ogawa, Thin Solid Films 70, 181 (1980).

    Article  CAS  Google Scholar 

  16. A. Lahav, M. Eizenberg, and Y. Komem, Mater. Res. Soc. Symp. Proc. 37, 641 (1985).

    Article  CAS  Google Scholar 

  17. T. Sands, V. G. Keramidas, J. Washburn, and R. Gronsky, Appl. Phys. Lett. 48, 402 (1986).

    Article  CAS  Google Scholar 

  18. A. K. Sinha, T. E. Smith, and M. J. Levinstein, IEEE Trans. Electron Devices ED-22, 218 (1975).

    Article  Google Scholar 

  19. J. O. Olowolafe, P. S. Ho, M. J. Hovel, J. E. Lewis, and J. M. Woodall, J. Appl. Phys. 50, 955 (1979).

    Article  CAS  Google Scholar 

  20. X-F.Zengand D. D. L. Chung, J. Vac. Sci. Technol. 21, 611 (1982).

    Article  CAS  Google Scholar 

  21. T. S. Kuan, J. L. Freeouf, P. E. Batson, and E. L. Wilkie, J. Appl. Phys. 58, 1519 (1985).

    Article  CAS  Google Scholar 

  22. T. Sands, V. G. Keramidas, R. Gronsky, and J. Washburn, Mater. Lett. 3, 409 (1985).

    Article  CAS  Google Scholar 

  23. T. S. Kuan, Mater. Res. Soc. Symp. Proc. 31, 143 (1984).

    Article  CAS  Google Scholar 

  24. T. Sands, V. G. Keramidas, A. J. Yu, K. M. Yu, R. Gronsky, and J. Washburn, Mater. Res. Soc. Symp. Proc. 54, 367 (1986).

    Article  CAS  Google Scholar 

  25. P. Oelhafen, J. L. Freeouf, T. S. Kuan, T. N. Jackson, and P. E. Batson, J. Vac. Sci. Technol. B 1, 588 (1983).

    Article  CAS  Google Scholar 

  26. M. El-Boragy and K. Schubert, Z. Metallkunde 72, 279 (1981).

    CAS  Google Scholar 

  27. N. Toyoda, M. Mochizuki, T. Mizoguehi, R. Nii, and A. Hojo, GaAs and Related Compounds, 1981, edited by T. Sugano (Institute of Physics, Bristol, 1982), p. 521.

    Google Scholar 

  28. A. K. Sinha and J. M. Poate, in Thin Films-Interdiffusion and Reactions, edited by K. N. Tu and J. W. Mayer (Wiley, New York, 1978), p. 417.

    Google Scholar 

  29. A. K. Sinha and J. M. Poate, Appl. Phys. Lett. 23, 666 (1973).

    Article  CAS  Google Scholar 

  30. C. Fontaine, T. Okumura, and K. N. Tu, J. Appl. Phys. 54, 1404 (1983).

    Article  CAS  Google Scholar 

  31. T. Sands, Mater. Res. Soc. Symp. Proc. 62, 25 (1986).

    Article  CAS  Google Scholar 

  32. G. Cliff and G. W. Lorimer, J. Micros. 103, 203 (1975).

    Article  Google Scholar 

  33. L. R. Doolittle, Nucl. Instrum. Methods B 9, 344 (1985).

    Article  Google Scholar 

  34. L. J. Chen and Y. F. Hsieh, Proceedings of the 41st Annual Meeting of the Electron Microscopy Society of America edited by G. W. Bailey (San Francisco, San Francisco, CA, 1983), p. 156.

    Google Scholar 

  35. W. B. Pearson, Handbook of Lattice Spacings and Structures of Metals and Alloys (Pergamon, New York, 1958), p. 695; F. Laves and H. J. Wallbaum, Z. Angew, Min. 4, 17 (1941–42).

    Google Scholar 

  36. M. Hansen, Constitution of Binary Alloys (McGraw-Hill, New York, 1958), p. 750; E. Hellner and F. Laves, Z. Naturforsch. A 2, 177 (1947).

    Google Scholar 

  37. S. H. Chen, C. B. Carter, C. J. Palmstrom, and T. Ohashi, Mater. Res. Soc. Symp. Proc. 54, 361 (1986).

    Article  CAS  Google Scholar 

  38. R. D. Heyding and L. D. Calvert, Can. J. Chem. 35, 1205 (1957).

    Article  Google Scholar 

  39. R. Beyers, R. Sinclair, and M. E. Thomas, J. Vac. Sci. Technol. B 2, 781 (1984).

    Article  CAS  Google Scholar 

  40. T. Sands, K. M. Yu, S. K. Cheung, and V. G. Keramidas, in the Proceedings of the 1986 Northeast Regional Meeting on Semiconductor-based Heterostructures: Interfacial Structure and Stability, edited by M. L. Green, J. E. E. Baglin, G. Y. Chin, H. W. Deckman, W. Mayo, and D. Narasinham (The Metallurgical Society, Warrendale, PA, 1986), p. 397.

    Google Scholar 

  41. K. M. Yu, J. Jaklevic, and E. E. Haller, Mater. Res. Soc. Symp. Proc. 69, 281 (1986).

    Article  CAS  Google Scholar 

  42. V. Kumar, J. Phys. Chem. Solids 36, 535 (1975).

    Article  CAS  Google Scholar 

  43. C. C. Chang, S. P. Murarka, V. Kumar, and G. Quintana, J. Appl. Phys. 46, 4237 (1975).

    Article  CAS  Google Scholar 

  44. A. J. Yu, G. J. Galvin, C. J. Palmstrom, and J. W. Mayer, Appl. Phys. Lett. 47, 934 (1985).

    Article  CAS  Google Scholar 

  45. A. J. Yu and C. J. Palmstrom (private communication).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work performed as a visiting Industry Fellow at the Center for Advanced Materials, Lawrence Berkeley Laboratory, Berkeley, California 94720.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sands, T., Keramidas, V.G., Yu, A.J. et al. Ni, Pd, and Pt on GaAs: A comparative study of interfacial structures, compositions, and reacted film morphologies. Journal of Materials Research 2, 262–275 (1987). https://doi.org/10.1557/JMR.1987.0262

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1987.0262

Navigation