Skip to main content
Log in

Raman and X-ray diffraction study of Ag–In–S polycrystals, films, and nanoparticles

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A Raman and X-ray diffraction (XRD) study of AgInS2 and Ag-deficient Ag–In–S nanoparticles produced by colloidal synthesis is performed in comparison with polycrystals and thermally evaporated films of similar compositions. The tetragonal and cubic structures of AgInS2 and AgIn5S8 polycrystals as well as the amorphous structure of the films are confirmed by XRD. Average size of the Ag–In–S nanoparticles (~ 2 nm) is estimated from the Scherrer equation. The Raman spectra of AgInS2 and Ag-deficient Ag–In–S nanoparticles reveal significant broadening due to phonon confinement and the contributions of surface phonons. A strong similarity of the spectra of ultrasmall Ag–In–S nanoparticles prepared with various precursor ratios is explained by the fact that in this case the nanoparticle sulphur-rich chemical composition is determined by the high amount of sulphur atoms on the nanocrystal surface, which simultaneously belong to the glutathione capping ligands.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. D. Aldakov, A. Lefrançois, P. Reiss, Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications. J. Mater. Chem. C 1, 3756–3776 (2013). https://doi.org/10.1039/c3tc30273c

    Article  CAS  Google Scholar 

  2. P. Reiss, M. Carriere, C. Lincheneau, L. Vaure, S. Tamang, Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials. Chem. Rev. 116, 10731–10819 (2016). https://doi.org/10.1021/acs.chemrev.6b00116

    Article  CAS  Google Scholar 

  3. G. Xu, S. Zeng, B. Zhang, M.T. Swihart, K.T. Yong, P.N. Prasad, New generation cadmium-free quantum dots for biophotonics and nanomedicine. Chem. Rev. 116, 12234–12327 (2016). https://doi.org/10.1021/acs.chemrev.6b00290

    Article  CAS  Google Scholar 

  4. M.M. Chen, H.G. Xue, S.P. Guo, Multinary metal chalcogenides with tetrahedral structures for second-order nonlinear optical, photocatalytic, and photovoltaic applications. Coord. Chem. Rev. 368, 115–133 (2018). https://doi.org/10.1016/j.ccr.2018.04.014

    Article  CAS  Google Scholar 

  5. O. Stroyuk, A. Raevskaya, N. Gaponik, Solar light harvesting with multinary metal chalcogenide nanocrystals. Chem. Soc. Rev. 47, 5354–5422 (2018). https://doi.org/10.1039/C8CS00029H

    Article  CAS  Google Scholar 

  6. O. Yarema, M. Yarema, V. Wood, Tuning the composition of multicomponent semiconductor nanocrystals: the case of I−III−VI materials. Chem. Mater. 30, 1446–1461 (2018). https://doi.org/10.1021/acs.chemmater.7b04710

    Article  CAS  Google Scholar 

  7. Y. Liu, F. Li, H. Huang, B. Mao, Y. Liu, Z. Kang, Optoelectronic and photocatalytic properties of I-III–VI QDs: Bridging between traditional and emerging new QDs. J Semicond 41, 091701 (2020). https://doi.org/10.1088/1674-4926/41/9/091701

    Article  CAS  Google Scholar 

  8. A.A.P. Mansur, H.S. Mansur, C. Tabare, A. Paiva, N.S.V. Capanema, Eco-friendly AgInS2/ZnS quantum dot nanohybrids with tunable luminescent properties modulated by pH-sensitive biopolymer for potential solar energy harvesting applications. J. Mater. Sci.: Mater. Electron. 30, 16702–16717 (2019). https://doi.org/10.1007/s10854-019-00719-0

    Article  CAS  Google Scholar 

  9. O. Stroyuk, O. Raievska, D.R.T. Zahn, Unique luminescent properties of composition-/size-selected aqueous Ag-In-S and core/shell Ag-In-S/ZnS quantum dots, in Core/shell quantum dots. ed. by X. Tong, Z.M. Wang (Springer, Cham, 2021), pp.67–122

    Google Scholar 

  10. A. Raevskaya, V. Lesnyak, D. Haubold, V. Dzhagan, O. Stroyuk, N. Gaponik, D.R.T. Zahn, A. Eychmüller, A fine size selection of brightly luminescent water-soluble Ag−In−S and Ag−In−S/ZnS quantum dots. J. Phys. Chem. C. 121, 9032–9042 (2017). https://doi.org/10.1021/acs.jpcc.7b00849

    Article  CAS  Google Scholar 

  11. B. Zeng, F. Chen, Z. Liu, Z. Guan, X. Li, F. Teng, A. Tang, Seeded-mediated growth of ternary Ag–In–S and quaternary Ag–In–Zn–S nanocrystals from binary Ag2S seeds and the composition-tunable optical properties. J. Mate.r Chem. C 7, 1307–1315 (2019). https://doi.org/10.1039/c8tc05755a

    Article  CAS  Google Scholar 

  12. M.D. Regulacio, K.Y. Win, S.L. Lo, S.Y. Zhang, X. Zhang, S. Wang, M.Y. Han, Y. Zheng, Aqueous synthesis of highly luminescent AgInS2–ZnS quantum dots and their biological applications. Nanoscale 5, 2322–2329 (2013). https://doi.org/10.1039/c3nr34159c

    Article  CAS  Google Scholar 

  13. O. Stroyuk, A. Raevskaya, F. Spranger, O. Selyshchev, V. Dzhagan, S. Schulze, D.R.T. Zahn, A. Eychmüller, Origin and dynamics of highly efficient broadband photoluminescence of aqueous glutathione-capped size-selected Ag−In−S quantum dots. J. Phys. Chem. C 122, 13648–13658 (2018). https://doi.org/10.1021/acs.jpcc.8b00106

    Article  CAS  Google Scholar 

  14. L. Liu, R. Hu, I. Roy, G. Lin, L. Ye, J.L. Reynolds, J. Liu, J. Liu, S.A. Schwartz, X. Zhang, K.T. Yong, Synthesis of luminescent near-infrared AgInS2 nanocrystals as optical probes for in vivo applications. Theranostics 3, 109–115 (2013). https://doi.org/10.7150/thno.5133

    Article  CAS  Google Scholar 

  15. W.M. Girma, M.Z. Fahmi, A. Permadi, M.A. Abate, J.-Y. Chang, Synthetic strategies and biomedical applications of I–III–VI ternary quantum dots. J. Mater. Chem. B 5, 6193–6216 (2017). https://doi.org/10.1039/c7tb01156c

    Article  CAS  Google Scholar 

  16. E. Soheyli, D. Azad, R. Sahraei, A.A. Hatamnia, A. Rostamzad, M. Alinazari, Synthesis and optimization of emission characteristics of water-dispersible Ag-In-S quantum dots and their bactericidal activity. Coll. Surf. B: Biointerfaces 182, 110389 (2019). https://doi.org/10.1016/j.colsurfb.2019.110389

    Article  CAS  Google Scholar 

  17. A. Delices, D. Moodelly, C. Hurot, Y. Hou, W.L. Ling, C. Saint-Pierre, D. Gasparutto, G. Nogues, P. Reiss, K. Kheng, Aqueous synthesis of DNA-functionalized near-infrared AgInS2/ZnS core/shell quantum dots. ACS Appl. Mater. Interfaces 12, 44026–44038 (2020). https://doi.org/10.1021/acsami.0c11337

    Article  CAS  Google Scholar 

  18. H. Shi, L. Jia, C. Wang, E. Liu, Z. Ji, J. Fan, A high sensitive and selective fluorescent probe for dopamine detection based on water soluble AgInS2 quantum dots. Opt. Mater. 99, 109549 (2020). https://doi.org/10.1016/j.optmat.2019.109549

    Article  CAS  Google Scholar 

  19. X. Sun, M. Shi, C. Zhang, J. Yuan, M. Yin, S. Du, S. Yu, B. Ouyang, F. Xue, S.T. Yang, Fluorescent Ag−In−S/ZnS quantum dots for tumor drainage lymph node imaging in vivo. ACS Appl. Nano Mater. 4, 1029–1037 (2021). https://doi.org/10.1021/acsanm.0c02542

    Article  CAS  Google Scholar 

  20. S.P. Hong, H.K. Park, J.H. Oh, H. Yang, Y.R. Do, Comparisons of the structural and optical properties of o-AgInS2, t-AgInS2, and c-AgIn5S8 nanocrystals and their solid-solution nanocrystals with ZnS. J. Mater. Chem. 22, 18939–18949 (2012). https://doi.org/10.1039/c2jm33879c

    Article  CAS  Google Scholar 

  21. F.L.N. Sousa, D.V. Freitas, R.R. Silva, S.E. Silva, A.C. Jesus, H.S. Mansur, W.M. Azevedo, M. Navarro, Tunable emission of AgIn5S8 and ZnAgIn5S8 nanocrystals: electrosynthesis, characterization and optical application. Mater. Today Chem. 16, 100238 (2020). https://doi.org/10.1016/j.mtchem.2019.100238

    Article  CAS  Google Scholar 

  22. L. Borkovska, A. Romanyuk, V. Strelchuk, Y. Polishchuk, V. Kladko, O. Stroyuk, A. Raevskaya, T. Kryshtab, Optical characterization of the AgInS2 nanocrystals synthesized in aqueous media under stoichiometric conditions. Mater. Sci. Semicond. Process. 37, 135–142 (2015). https://doi.org/10.1016/j.mssp.2015.02.041

    Article  CAS  Google Scholar 

  23. B. Cichy, A. Olejniczak, O. Bezkrovnyi, L. Kepinski, W. Strek, Defects mediated charge disturbance in quantum-confined AgxS/AgInS2 random alloys – Toward slowly decaying quantum dot emitters. J. Alloys Compd. 798, 290–299 (2019). https://doi.org/10.1016/j.jallcom.2019.05.265

    Article  CAS  Google Scholar 

  24. B.V. Lopushanska, Y.M. Azhniuk, I.P. Studenyak, V.V. Lopushansky, A.V. Gomonnai, D.R.T. Zahn, Optical characterisation of colloidal AgInS2 quantum dots synthesised from aqueous solutions. J. Nano Electron. Phys. 14(4), 04010 (2022)

    Article  CAS  Google Scholar 

  25. O. Raievska, O. Stroyuk, Y. Azhniuk, D. Solonenko, A. Barabash, C.J. Brabec, D.R.T. Zahn, Composition-dependent optical band bowing, vibrational and photochemical behavior of aqueous glutathione-capped (Cu, Ag)–In–S quantum dots. J. Chem. Phys. C 124, 19375–19388 (2020). https://doi.org/10.1021/acs.jpcc.0c05453

    Article  CAS  Google Scholar 

  26. B.V. Lopushanska, Y.M. Azhniuk, D. Solonenko, V.V. Lopushansky, I.P. Studenyak, D.R.T. Zahn, Structural and optical study of glutathione-capped Ag–In–S nanocrystals. Mole. Cryst. Liquid Cryst. 717, 98–108 (2021). https://doi.org/10.1080/15421406.2020.1860535

    Article  CAS  Google Scholar 

  27. V. Dzhagan, O. Selyshchev, O. Raievska, O. Stroyuk, L. Hertling, N. Mazur, M.Y. Valakh, D.R.T. Zahn, Phonon spectra of strongly luminescent nonstoichiometric Ag−In−S, Cu−In−S, and Hg−In−S nanocrystals of small size. J. Phys. Chem. C 124, 15511–15522 (2020). https://doi.org/10.1021/acs.jpcc.0c03268

    Article  CAS  Google Scholar 

  28. V. Dzhagan, A.P. Litvinchuk, M.Y. Valakh, D.R.T. Zahn, Phonon Raman spectroscopy of nanocrystalline multinary chalcogenides as a probe of complex lattice structures. J. Phys: Condens. Matter. 35, 103001 (2023). https://doi.org/10.1088/1361-648X/acaa18

    Article  Google Scholar 

  29. O.E. Rayevska, G.Y. Grodzyuk, V.M. Dzhagan, O.L. Stroyuk, S.Y. Kuchmiy, V.F. Plyusnin, V.P. Grivin, M.Y. Valakh, Synthesis and characterization of white-emitting CdS quantum dots stabilized with polyethylenimine. J. Phys. Chem. C 114(51), 22478–22486 (2010). https://doi.org/10.1021/jp108561u

    Article  CAS  Google Scholar 

  30. V. Dzhagan, I. Lokteva, C. Himcinschi, X. Jin, J. Kolny-Olesiak, D.R.T. Zahn, Phonon Raman spectra of colloidal CdTe nanocrystals: effect of size, non-stoichiometry and ligand exchange. Nanoscale Res. Lett. 6(1), 79 (2011). https://doi.org/10.1186/1556-276X-6-79

    Article  CAS  Google Scholar 

  31. B.V. Lopushanska, Y.M. Azhniuk, V.V. Lopushansky, S.B. Molnar, I.P. Studenyak, O.V. Selyshchev, D.R.T. Zahn, Synthesis from aqueous solutions and optical properties of Ag–In–S quantum dots. Appl. Nanosci. 10, 4909–4921 (2020). https://doi.org/10.1007/s13204-020-01407-w

    Article  CAS  Google Scholar 

  32. K.E. Knowles, K.H. Hartstein, T.B. Kilburn, A. Marchioro, H.D. Nelson, P.J. Whitham, D.R. Gamelin, Luminescent colloidal semiconductor nanocrystals containing copper: synthesis, photophysics, and applications. Chem. Rev. 116, 10820–10851 (2016). https://doi.org/10.1021/acs.chemrev.6b00048

    Article  CAS  Google Scholar 

  33. O. Stroyuk, V. Dzhagan, A. Raevskaya, F. Spranger, N. Gaponik, D.R.T. Zahn, Insights into different photoluminescence mechanisms of binary and ternary aqueous nanocrystals from the temperature dependence: a case study of CdSe and Ag-In-S. J. Luminesc 215, 116630 (2019). https://doi.org/10.1016/j.jlumin.2019.116630

    Article  CAS  Google Scholar 

  34. Y. Akaki, S. Kurihara, M. Shirahama, K. Tsurugida, S. Seto, T. Kakeno, K. Yoshino, Structural, electrical and optical properties of AgInS2 thin films grown by thermal evaporation method. J. Phys. Chem. Sol. 66, 1858–1861 (2005). https://doi.org/10.1016/j.jpcs.2005.09.005

    Article  CAS  Google Scholar 

  35. Sunil MA, Kodali P (2018) Role of substrate temperature on the properties of AgInS2 thin films by spray pyrolysis. AIP Conf Proc 1992: 040035. https://doi.org/10.1063/1.5048000

  36. C.H. Wang, K.W. Cheng, C.J. Tseng, Photoelectrochemical properties of AgInS2 thin films prepared using electrodeposition. Solar Energy Mater. & Solar Cells 9, 453–461 (2011). https://doi.org/10.1016/j.solmat.2010.08.030

    Article  CAS  Google Scholar 

  37. A. Gantassi, H. Essaidi, Z. Ben Hamed, D. Gherouel, K. Boubaker, A. Colantoni, D. Monarca, F. Kouki, M. Amlouk, T. Manoubi, Growth and characterization of single phase AgInS2 crystals for energy conversion application through β-In2S3 by thermal evaporation. J. Cryst. Growth 413, 51–60 (2015). https://doi.org/10.1016/j.jcrysgro.2014.12.012

    Article  CAS  Google Scholar 

  38. I.K. El Zawawi, M.A. Mahdy, Physical characterization of orthorhombic AgInS2 nanocrystalline thin films. J. Electron. Mater. 46, 6430–6439 (2017). https://doi.org/10.1007/s11664-017-5662-y

    Article  CAS  Google Scholar 

  39. C.A. Arredondo, J. Clavijo, G. Gordillo, Investigation of AgInS2 thin films grown by co-evaporation. J. Phys. Conf. Ser. 167, 012050 (2009). https://doi.org/10.1088/1742-6596/167/1/012050

    Article  CAS  Google Scholar 

  40. D. Gherouel, I. Gaied, M. Amlouk, Effect of heat treatment in air on physical properties of AgInS2 sprayed thin films. J. Alloys Compd. 566, 147–155 (2013). https://doi.org/10.1016/j.jallcom.2013.02.188

    Article  CAS  Google Scholar 

  41. Y. Akaki, K. Yamashita, T. Yoshitake, S. Nakamura, S. Seto, T. Tokuda, K. Yoshino, Characterization of AgInS2 thin films prepared by vacuum evaporation. Phys. B 407, 2858–2860 (2012). https://doi.org/10.1016/j.physb.2011.12.119

    Article  CAS  Google Scholar 

  42. Y.M. Azhniuk, A.V. Gomonnai, D. Solonenko, V.V. Lopushansky, V.Y. Loya, I.M. Voynarovych, I.Y. Roman, D.R.T. Zahn, Characterization of Ag–In–S films prepared by thermal evaporation. Mater. Today Proc. 62, 5745–5748 (2022). https://doi.org/10.1016/j.matpr.2022.01.488

    Article  CAS  Google Scholar 

  43. X.L. Han, Q. Li, H. Hao, C. Liu, R. Li, F. Yu, J. Lei, Q. Jiang, Y. Liu, J. Hu, Facile one-step synthesis of quaternary AgInZnS quantum dots and their applications for causing bioeffects and detecting Cu2+. RSC Adv. 10, 9172–9181 (2020). https://doi.org/10.1039/c9ra09840b

    Article  CAS  Google Scholar 

  44. M. Ortega-López, A. Morales-Acevedo, O. Solorza-Feria, Physical properties of AgInS2 films prepared by chemical spray pyrolysis. Thin Solid Films 385, 120–125 (2001). https://doi.org/10.1016/S0040-6090(01)00758-1

    Article  Google Scholar 

  45. T. Ogawa, T. Kuzuya, Y. Hamanaka, K. Sumiyama, Synthesis of Ag–In binary sulfide nanoparticles—structural tuning and their photoluminescence properties. J. Mater. Chem. 20, 2226–2231 (2010). https://doi.org/10.1039/b920732e

    Article  CAS  Google Scholar 

  46. A.S. Lanje, S.J. Sharma, R.B. Pode, Synthesis of silver nanoparticles: a safer alternative to conventional antimicrobial and antibacterial agents. J. Chem. Pharm. Res. 2, 478–483 (2010)

    CAS  Google Scholar 

  47. T. Torimoto, M. Tada, M. Dai, T. Kameyama, S. Suzuki, S. Kuwabata, Tunable photoelectrochemical properties of chalcopyrite AgInS2 nanoparticles size-controlled with a photoetching technique. J. Phys. Chem. C 116, 21895–21902 (2012). https://doi.org/10.1021/jp307305q

    Article  CAS  Google Scholar 

  48. W.W. Xiong, G.H. Yang, X.C. Wu, J.J. Zhu, Microwave-assisted synthesis of highly luminescent AgInS2/ZnS nanocrystals for dynamic intracellular Cu(II) detection. J. Mater. Chem. B 1, 4160–4165 (2013). https://doi.org/10.1039/c3tb20638f

    Article  CAS  Google Scholar 

  49. S.M. Kobosko, D.H. Jara, P.V. Kamat, AgInS2−ZnS quantum dots: excited state interactions with TiO2 and photovoltaic performance. ACS Appl. Mater. Interfaces 9, 33379–33388 (2017). https://doi.org/10.1021/acsami.6b14604

    Article  CAS  Google Scholar 

  50. Z. Luo, H. Zhang, J. Huang, X. Zhong, One-step synthesis of water-soluble AgInS2 and ZnS–AgInS2 composite nanocrystals and their photocatalytic activities. J. Coll. Interface Sci. 377, 27–33 (2012). https://doi.org/10.1016/j.jcis.2012.03.074

    Article  CAS  Google Scholar 

  51. A. Raevskaya, O. Rozovik, A. Novikova, O. Selyshchev, O. Stroyuk, V. Dzhagan, I. Goryacheva, N. Gaponik, D.R.T. Zahn, A. Eychmüller, Luminescence and photoelectrochemical properties of size-selected aqueous copper-doped Ag–In–S quantum dots. RSC Adv. 8, 7550–7557 (2018). https://doi.org/10.1039/c8ra00257f

    Article  CAS  Google Scholar 

  52. P. Scherrer, Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1918, 98–100 (1918)

    Google Scholar 

  53. Y. Azhniuk, B. Lopushanska, O. Selyshchev, Y. Havryliuk, A. Pogodin, O. Kokhan, A. Ehm, V. Lopushansky, I. Studenyak, D.R.T. Zahn, Synthesis and optical properties of Ag–Ga–S quantum dots. Phys. Status Solidi B 259(10), 2100349 (2022). https://doi.org/10.1002/pssb.202100349

    Article  CAS  Google Scholar 

  54. S. Jeong, H.C. Yoon, N.S. Han, J.H. Oh, S.M. Park, B.K. Min, Y.R. Do, J.K. Song, Band-gap states of AgIn5S8 and ZnS−AgIn5S8 nanoparticles. J. Phys. Chem. C 121, 3149–3155 (2017). https://doi.org/10.1021/acs.jpcc.7b00043

    Article  CAS  Google Scholar 

  55. F.W. Ohrendorf, H. Haeuseler, Lattice dynamics of chalcopyrite type compounds Part I Vibrational frequencies. Cryst Res Technol. 34, 339–349 (1999). https://doi.org/10.1002/(SICI)1521-4079(199903)34:3%3c339::AID-CRAT339%3e3.0.CO;2-E

    Article  CAS  Google Scholar 

  56. H. Matsushita, S. Endo, T. Irie, Raman-scattering properties of I-III-VI2 group chalcopyrite semiconductors. Jpn. J. Appl. Phys. 31, 18–22 (1992). https://doi.org/10.1143/JJAP.31.18

    Article  CAS  Google Scholar 

  57. K. Wakita, H. Hirooka, S. Yasuda, F. Fujita, N. Yamamoto, Resonant Raman scattering and luminescence in CuInS2 crystals. J. Appl. Phys. 83, 443–447 (1998). https://doi.org/10.1063/1.366658

    Article  CAS  Google Scholar 

  58. R. Bacewicz, W. Gębicki, J. Filipowicz, Raman scattering in CuInS2xSe2(l-x) mixed crystals. J. Phys. Condens. Matter. 6, L777–L780 (1994). https://doi.org/10.1088/0953-8984/6/49/003

    Article  CAS  Google Scholar 

  59. V.M. Dzhagan, Y.M. Azhniuk, A.G. Milekhin, D.R.T. Zahn, Vibrational spectroscopy of compound semiconductor nanocrystals. J. Phys. D 51, 503001 (2018). https://doi.org/10.1088/1361-6463/aada5c

    Article  CAS  Google Scholar 

  60. P. Qiu, Y. Qin, Q. Zhang, R. Li, J. Yang, Q. Song, Y. Tang, S. Bai, X. Shi, L. Chen, Intrinsically high thermoelectric performance in AgInSe2 n-type diamond-like compounds. Adv. Sci. 2017, 1700727 (2017). https://doi.org/10.1002/advs.201700727

    Article  CAS  Google Scholar 

  61. F.Y. Lee, K.Y. Yang, Y.C. Wang, C.H. Li, T.R. Lee, T.C. Lee, Electrochemical properties of an AgInS2 photoanode prepared using ultrasonic-assisted chemical bath deposition. RSC Adv. 4, 35215–35223 (2014). https://doi.org/10.1039/c4ra01728e

    Article  CAS  Google Scholar 

  62. A. Hirase, Y. Hamanaka, T. Kuzuya, Ligand-induced luminescence transformation in AgInS2 nanoparticles: from defect emission to band-edge emission. J. Phys. Chem. Lett. 11, 3969–3974 (2020). https://doi.org/10.1021/acs.jpclett.0c01197

    Article  CAS  Google Scholar 

  63. N.M. Gasanly, A.Z. Magomedov, N.N. Melnik, B.G. Salamov, Raman and infrared studies of AgIn5S8 and CuIn5S8 single crystal. Phys. Status Solidi B 177, K31–K35 (1993). https://doi.org/10.1002/pssb.2221770126

    Article  CAS  Google Scholar 

  64. I.V. Bodnar, A.G. Karoza, E.A. Kudritskaya, A.G. Smirnova, Vibrational spectra of In2S3, CuIn5S8 and AgIn5S8 compounds with a spinel structure. J. Appl. Spectrosc. 64, 279–282 (1997). https://doi.org/10.1007/BF02675156

    Article  CAS  Google Scholar 

  65. C.A. Durante Rincón, L.T. Durán, J. Estévez Medina, J.A. Castro, M. Léon, J.R. Fermín, Structural and optical properties of AgIn5S8. Int. J. Mod. Phys. B 31, 1750246 (2017). https://doi.org/10.1142/S0217979217502460

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Y. Azhniuk is grateful to the International Office of Chemnitz University of Technology for the financial support of his research stay at the university.

Funding

Technische Universität Chemnitz,Visiting Scholar Program,Yuriy Azhniuk

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy Azhniuk.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azhniuk, Y., Gomonnai, A.V., Solonenko, D. et al. Raman and X-ray diffraction study of Ag–In–S polycrystals, films, and nanoparticles. Journal of Materials Research 38, 2239–2250 (2023). https://doi.org/10.1557/s43578-023-00960-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-00960-8

Keywords

Navigation