Skip to main content
Log in

Probing the local creep mechanisms of SiC/SiC ceramic matrix composites with high-temperature nanoindentation

  • Article
  • Focus Issue: Advanced Nanomechanical Testing
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Here, we probed the local creep response of SiC/SiC ceramic matrix composites via high-temperature indentation to examine the contributions of heterogeneous microstructure to creep. Indentations were conducted up to 800 °C on single and polycrystalline Si and SiC, reaction-bonded SiC, and the SiC/SiC composite, which indicated higher creep strain rates of polycrystalline materials yet uncovered comparably lower strain rates of the SiC/SiC composite. Indentation creep rate was observed to be highly dependent on contact stresses. An analytical creep model was presented based on a rule of mixtures approach to incorporate material heterogeneity of the SiC/SiC composite. A finite element model was applied to predict the indentation deformation zone, in which the composite constituents would jointly influence the creep response. The analytical model was then solved for temperatures up to 800 °C and exhibited good agreement with experimental measurements.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. H.M. Yun, J.Z. Gyekenyesi, Y.L. Chen, D.R. Wheeler, J.A. Dicarlo, Tensile behavior of SiC/SiC composites reinforced by treated Sylramic SiC fibers. Ceram. Eng. Sci. Proc. 22(3), 521–531 (2001)

    Article  CAS  Google Scholar 

  2. Y. Zhou, W. Zhou, F. Luo, D. Zhu, Effects of dip-coated BN interphase on mechanical properties of SiCf/SiC composites prepared by CVI process. Trans. Nonferrous Met. Soc. China 24(5), 1400 (2014)

    Article  CAS  Google Scholar 

  3. Y. Gowayed, G. Ojard, R. Miller, U. Santhosh, J. Ahmad, and R. John: Mechanical Properties of MI SiC/SiC Composites and Their Constituents (2007).

  4. T. Ishikawa, Recent developments of the SiC fiber Nicalon and its composites, including properties of the SiC fiber Hi-Nicalon for ultra-high temperature. Compos. Sci. Technol. 51(2), 135 (1994)

    Article  CAS  Google Scholar 

  5. C. Droillard, J. Lamon, Fracture toughness of 2-D woven SiC/SiC CVI-composites with multilayered interphases. J. Am. Ceram. Soc. 79(4), 849 (1996)

    Article  CAS  Google Scholar 

  6. G.N. Morscher, H.M. Yun, J.A. Dicarlo, In-plane cracking behavior and ultimate strength for 2D woven and braided melt-infiltrated SiC/SiC composites tensile loaded in off-axis fiber directions. J. Am. Ceram. Soc. 90(10), 3185 (2007)

    Article  CAS  Google Scholar 

  7. B.F. Sorensen, J.W. Holmes, Effect of loading rate on the monotonic tensile behavior of a continuous-fiber-reinforced glass-ceramic matrix composite. J. Am. Ceram. Soc. 79(2), 313 (1996)

    Article  Google Scholar 

  8. G.N. Morscher, Stress-dependent matrix cracking in 2D woven SiC-fiber reinforced melt-infiltrated SiC matrix composites. Compos. Sci. Technol. 64, 1311 (2004)

    Article  CAS  Google Scholar 

  9. J.Z. Gyekenyesi, N.P. Bansal, High Temperature Tensile Properties of Unidirectional Hi-Nicalon/Celsian Composites in Air (2000)

  10. D.J. Bertrand, V. Sabelkin, L. Zawada, S. Mall, Fatigue behavior of sylramic-iBN/BN/CVI SiC ceramic matrix composite in combustion environment. J. Mater. Sci. 50(22), 7437 (2015)

    Article  CAS  Google Scholar 

  11. R.K. Mishra, C. Beura, Life consumption assessment of a large jet engine. J. Fail. Anal. Prev. 14(4), 519 (2014)

    Article  Google Scholar 

  12. C. B. Meher-Homji, G. Gabriles, in Proc. 27th Turbomach. Symp. (1998), pp. 129–179.

  13. W.D. Nix, H. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411 (1998)

    Article  CAS  Google Scholar 

  14. J. Pelleg, Solid Mechanics and Its Applications: Creep in Ceramics (Springer, New York, 2017).

    Google Scholar 

  15. G.N. Morscher, G. Ojard, R. Miller, Y. Gowayed, U. Santhosh, J. Ahmad, R. John, Tensile creep and fatigue of Sylramic-iBN melt-infiltrated SiC matrix composites: retained properties, damage development, and failure mechanisms. Compos. Sci. Technol. 68, 3305 (2008)

    Article  CAS  Google Scholar 

  16. S. Zhu, M. Mizuno, Y. Kagawa, Y. Mutoh, Monotonic tension, fatigue and creep behavior of SiC-fiber-reinforced SiC-matrix composites: a review. Compos. Sci. Technol. (6 SPEC. SEC) 59(6), 833 (1999)

    Article  Google Scholar 

  17. G. Chollon, R. Pailler, R. Naslain, Correlation between microstructure and mechanical behaviour at high temperatures of a SiC fibre with a low oxygen content (Hi-Nicalon). J. Mater. Sci. 32, 1133 (1997)

    Article  CAS  Google Scholar 

  18. E.G. Herbert, G.M. Pharr, W.C. Oliver, B.N. Lucas, J.L. Hay, On the measurement of stress–strain curves by spherical indentation. Thin Solid Films 398–399, 331 (2001)

    Article  Google Scholar 

  19. B. Xu, X. Chen, Determining engineering stress-strain curve directly from the load-depth curve of spherical indentation test. J. Mater. Res. 25(12), 2297 (2010)

    Article  CAS  Google Scholar 

  20. N.A. Sakharova, J.V. Fernandes, J.M. Antunes, M.C. Oliveira, Comparison between Berkovich, Vickers and conical indentation tests: a three-dimensional numerical simulation study. Int. J. Solids Struct. 46(5), 1095 (2009)

    Article  Google Scholar 

  21. K. Komvopoulos, V. Do, E.S. Yamaguchi, P.R. Ryason, Nanomechanical and nanotribological properties of an antiwear tribofilm produced from phosphorus-containing additives on boundary-lubricated steel surfaces. J. Tribol. 126, 775 (2004)

    Article  CAS  Google Scholar 

  22. N. Rohbeck, D. Tsivoulas, I.P. Shapiro, P. Xiao, S. Knol, J.M. Escleine, M. Perez, B. Liu, Comparison study of silicon carbide coatings produced at different deposition conditions with use of high temperature nanoindentation. J. Mater. Sci. 52(4), 1868 (2017)

    Article  CAS  Google Scholar 

  23. H. Takagi, M. Dao, M. Fujiwara, Analysis on pseudo-steady indentation creep. Acta Mech. Solida Sin. 21(4), 283–288 (2008)

    Article  Google Scholar 

  24. G.M. Pharr, E.G. Herbert, Y. Gao, The indentation size effect: a critical examination of experimental observations and mechanistic interpretations. Annu. Rev. Mater. Res. 40(1), 271 (2010)

    Article  CAS  Google Scholar 

  25. W.D. Nix, H. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411 (1997)

    Article  Google Scholar 

  26. X.L. Gao, X.N. Jing, G. Subhash, Two new expanding cavity models for indentation deformations of elastic strain-hardening materials. Int. J. Solids Struct. 43(7–8), 2193 (2006)

    Article  Google Scholar 

  27. Y. Huang, F. Zhang, K.C. Hwang, W.D. Nix, G.M. Pharr, G. Feng, A model of size effects in nano-indentation. J. Mech. Phys. Solids 54, 1668 (2006)

    Article  Google Scholar 

  28. Q. Ma, D.R. Clarke, Size dependent hardness of silver single crystals. J. Mater. Res. 10(4), 853 (1995)

    Article  CAS  Google Scholar 

  29. K.W. McElhaney, J.J. Vlassak, W.D. Nix, Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J. Mater. Res. 13(5), 1300 (1998)

    Article  CAS  Google Scholar 

  30. Mech. APDL Command Ref. (2011).

  31. Z. Xu, X. Li, Sample size effect on nanoindentation of micro-/nanostructures. Acta Mater. 54(6), 1699 (2006)

    Article  CAS  Google Scholar 

  32. J.L. Daly, On Comparison of Indentation Models (University of South Florida, Tampa, 2007).

    Google Scholar 

  33. A.K. Swarnaker, O. Van der Biest, J. Vanhellemont, Determination of the Si Young’s modulus between room and melt temperature using the impulse excitation technique. Phys. Status Solidi C 11(1), 150 (2014)

    Article  Google Scholar 

  34. C.H. Cho, Characterization of Young’s modulus of silicon versus temperature using a “beam deflection” method with a four-point bending fixture. Curr. Appl. Phys. 9(2), 538 (2009)

    Article  Google Scholar 

  35. S. Goel, Nanoindentation of polysilicon and single crystal silicon: Molecular dynamics simulation and experimental validation. J Phys D 47(27), 275304 (2014)

    Article  Google Scholar 

  36. J. Vanhellemont, A.K. Swarnakar, O. Van der Biest, Temperature dependent Young’s modulus of Si and Ge. ECS Trans. 64(11), 283 (2014)

    Article  CAS  Google Scholar 

  37. A.A. Wereszczak, W.L. Daloz, K.T. Strong, O.M. Jadaan, Effect of indenter elastic modulus on Hertzian ring crack initiation in silicon carbide. Int. J. Appl. Ceram. Technol. 8(4), 885 (2011)

    Article  CAS  Google Scholar 

  38. CoorsTek, Silicon Carbides-SiC-01024I (2017).

  39. Y. Katoh, D.F. Wilson, C.W. Forsberg, Assessment of Silicon Carbide Composites for Advanced Salt- Cooled Reactors (Oak Ridge, TN, TN, 2007).

    Book  Google Scholar 

  40. G.N. Morscher, V.V. Pujar, Creep and stress-strain behavior after creep for SiC fiber reinforced, melt-infiltrated SiC matrix composites. J. Am. Ceram. Soc. 89(5), 1652 (2006)

    Article  CAS  Google Scholar 

  41. G. Morscher, J. Gyekenyesi, Room temperature tensile behavior and damage accumulation of Hi-Nicalon reinforced SiC matrix composites. 22nd Annu. Conf. Compos. Adv. Ceram. Mater. Struct. (2009).

  42. J. Chen, Y. Shen, W. Liu, B.D. Beake, X. Shi, Z. Wang, Y. Zhang, X. Guo, Effects of loading rate on development of pile-up during indentation creep of polycrystalline copper. Mater. Sci. Eng. A 656, 216 (2016)

    Article  CAS  Google Scholar 

  43. S. Yao, D. Xu, B. Xiong, Y. Wang, The plastic and creep characteristics of silicon microstructure at elevated temperature. Microsyst. Technol. 21(5), 1111 (2015)

    Article  CAS  Google Scholar 

  44. T.A. Taylor, C.R. Barrett, Creep and recovery of silicon single crystals. Mater. Sci. Eng. 10(C), 93 (1972)

    Article  CAS  Google Scholar 

  45. J. Pelleg: in Creep Ceram. (2017), pp. 357–393.

  46. G.S. Corman, Creep of 6H α-silicon carbide single crystals. J. Am. Ceram. Soc. 75(12), 3421 (1992)

    Article  CAS  Google Scholar 

  47. K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985).

    Book  Google Scholar 

  48. C.S. Lynch, A.G. Evans, J. Am. Ceram. Soc. 79, 3113 (1996)

    Article  CAS  Google Scholar 

  49. J.F. Smith, S. Zheng, High temperature nanoscale mechanical property measurements. Surf. Eng. 16(2), 143 (2000)

    Article  CAS  Google Scholar 

  50. J.M. Wheeler, D.E.J. Armstrong, W. Heinz, R. Schwaiger, High temperature nanoindentation: the state of the art and future challenges. Curr. Opin. Solid State Mater. Sci. 19(6), 354 (2015)

    Article  Google Scholar 

  51. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992)

    Article  CAS  Google Scholar 

  52. W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19(01), 3 (2004)

    Article  CAS  Google Scholar 

  53. G. Feng, A. Ngan, Effects of creep and thermal drift on modulus measurement using depth-sensing indentation Effects of creep and thermal drift on modulus measurement using depth-sensing indentation. Cit. J. Mater. Res. 17(3), 660 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Rolls-Royce Corporation for providing funding for this research. Silicon carbide ceramic matrix composite specimens were provided by Rolls-Royce for the purposes of this study.

Funding

Co-authors Jason D. Baker and Andrew J. Ritchey are employees of Rolls-Royce Corporation, which provided funding and materials for this research. All work and analyses were conducted independently by the University of Virginia. Co-authors Baker and Ritchey contributed to the editing of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

CHB involved in formal analysis, methodology, investigation, and writing. JDB contributed to resources and reviewing/editing. AJR performed project administration, supervision, resources, funding acquisition, and reviewing/editing. XL did project administration, supervision, and reviewing/editing.

Corresponding author

Correspondence to Xiaodong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bumgardner, C.H., Baker, J.D., Ritchey, A.J. et al. Probing the local creep mechanisms of SiC/SiC ceramic matrix composites with high-temperature nanoindentation. Journal of Materials Research 36, 2420–2433 (2021). https://doi.org/10.1557/s43578-021-00128-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00128-2

Keywords

Navigation