Skip to main content
Log in

Nanocrystal solids: A modular approach to materials design

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Colloidal nanocrystals can combine the benefits of inorganic semiconductors with size-tunable electronic structure and inexpensive solution-based device fabrication. Single- and multicomponent nanocrystal assemblies, also known as superlattices, provide a powerful general platform for designing two- and three-dimensional solids with tailored electronic, magnetic, and optical properties. Such assemblies built of “designer atoms” can be considered as a novel type of condensed matter, whose behavior depends both on the properties of individual building blocks and on the interactions between them. Efficient charge transport is crucial for applications of nanocrystal-based materials in various electronic and optoelectronic devices. For a long time, nanocrystals were considered poor electronic conductors. To facilitate charge transport, we developed novel surface chemistry using all-inorganic ligands, namely metal chalcogenide complexes that transformed colloidal nanomaterials into a very competitive class of solution-processed semiconductors for electronic, thermoelectric, and photovoltaic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. R.C. Ropp, Solid State Chemistry (Elsevier Science, NY, 2003).

    Google Scholar 

  2. E.J. Corey, X.-M. Cheng, The Logic of Chemical Synthesis (Wiley-Interscience, NY, 1995).

    Google Scholar 

  3. M.A. Stroscio, M. Dutta, Advanced Semiconductor Heterostructures: Novel Devices, Potential Device Applications and Basic Properties (World Scientific, NJ, 2003).

  4. L. Brus, J. Phys. Chem. 90, 2555 (1986).

  5. V.I. Klimov, Nanocrystal Quantum Dots, 2nd edition (CRC Press, NY, 2010).

  6. C.B. Murray, C.R. Kagan, M.G. Bawendi, Annu. Rev. Mater. Sci. 30, 545 (2000).

  7. Y. Yin, A.P. Alivisatos, Nature 437, 664 (2005).

  8. J. Park, J. Joo, C.G. Kwon, Y. Jang, T. Hyeon Angew. Chem. Int. Ed. 46, 4630 (2007).

  9. P.D. Cozzoli, T. Pellegrino, L. Manna, Chem. Soc. Rev. 35, 1195 (2006).

  10. A.L. Efros, Sov. Phys. Semicond. 16, 772 (1982).

  11. J. Hu, L.-S. Li, W. Yang, L. Manna, L.-W. Wang, A.P. Alivisatos, Science 292, 2060 (2001).

  12. D.V. Talapin, R. Koeppe, S. Götzinger, A. Kornowski, J.M. Lupton, A.L. Rogach, O. Benson, J. Feldmann, H. Weller, Nano Lett. 3, 1677 (2003).

  13. D.V. Talapin, J.H. Nelson, E.V. Shevchenko, S. Aloni, B. Sadtler, A.P. Alivisatos, Nano Lett. 7, 2951 (2007).

  14. J. Mueller, J.M. Lupton, P.G. Lagoudakis, F. Schindler, R. Koeppe, A.L. Rogach, J. Feldmann, D.V. Talapin, H. Weller, Nano Lett. 5, 2044 (2005).

  15. R.M. Kraus, P.G. Lagoudakis, A.L. Rogach, D.V. Talapin, H. Weller, J.M. Lupton, J. Feldmann, Phys. Rev. Lett. 98, 017401 (2007).

  16. N.J. Borys, M.J. Walter, J. Huang, D.V. Talapin, J.M. Lupton, Science 330, 1371 (2010).

  17. J.-S. Lee, M.I. Bodnarchuk, E.V. Shevchenko, D.V. Talapin, J. Am. Chem. Soc. 132, 6382 (2010).

  18. J.S. Lee, E.V. Shevchenko, D.V. Talapin, J. Am. Chem. Soc. 130, 9673 (2008).

  19. A.L. Rogach, D.V. Talapin, E.V. Shevchenko, A. Kornowski, M. Haase, H. Weller, Adv. Funct. Mater. 12, 653 (2002).

  20. E.V. Shevchenko, D.V. Talapin, N.A. Kotov, S. O’Brien, C.B. Murray, Nature 439, 55 (2006).

  21. E.V. Shevchenko, D.V. Talapin, C.B. Murray, S. O’Brien, J. Am. Chem. Soc. 128, 3620 (2006).

  22. J. Chen, X. Ye, C.B. Murray, ACS Nano 4, 2374 (2010).

  23. H. Friedrich, C.J. Gommes, K. Overgaag, J.D. Meeldijk, W.H. Evers, B.D. Nijs, M.P. Boneschanscher, P.E. de Jongh, A.J. Verkleij, K.P. de Jong, A. van Blaaderen D. Vanmaekelbergh, Nano Lett. 9, 2719 (2009).

  24. D.K. Smith, B. Goodfellow, D.-M. Smilgies, B.A. Korgel, J. Am. Chem. Soc. 131, 3281 (2009).

  25. M.D. Eldridge, P.A. Madden, D. Frenkel, Nature 365, 35 (1993).

  26. M.E. Leunissen, C.G. Christova, A.-P Hynninen, C.P. Royall, A.I. Campbell, A. Imhof, M. Dijkstra, R. van Roij, A. van Blaaderen, Nature 437, 235 (2005).

  27. M.I. Bodnarchuk, M.V. Kovalenko, W. Heiss, D.V. Talapin, J. Am. Chem. Soc. 132, 11967 (2010).

  28. M.I. Bodnarchuk, L. Li, A. Fok, S. Nachtergaele, R.F. Ismagilov, D.V. Talapin, J. Am. Chem. Soc. 133, 8956 (2011).

  29. E. Abe, Y.F. Yan, S.J. Pennycook, Nat. Mater. 3, 759 (2004).

  30. D.V. Talapin, E.V. Shevchenko, M.I. Bodnarchuk, X. Ye, J. Chen, C.B. Murray, Nature 461, 964 (2009).

  31. D.V. Talapin, J.-S. Lee, M.V. Kovalenko, E.V. Shevchenko, Chem. Rev. 110, 389 (2010).

  32. D. Vanmaekelbergh, P. Liljeroth, Chem. Soc. Rev. 34, 299 (2005).

  33. D. Yu, C. Wang, P. Guyot-Sionnest, Science 300, 1277 (2003).

  34. C.A. Leatherdale, C.R. Kagan, N.Y. Morgan, S.A. Empedocles, M.A. Kastner M.G. Bawendi, Phys. Rev. B 62, 2669 (2000).

  35. D.V. Talapin, C.B. Murray, Science 310, 86 (2005).

  36. D.J. Norris, A.L. Efros, S.C. Erwin, Science 319, 1776 (2008).

  37. P.W. Anderson, P.A. Lee, M. Saitoh, Solid State Commun. 13, 595 (1973).

  38. J.D.K. Ethan, S. Harnik, H. Sean, D.M. Dean, L. Larissa, H.S. Edward, Appl. Phys. Lett. 92, 212105 (2008).

  39. Y. Liu, M. Gibbs, J. Puthussery, S. Gaik, R. Ihly, H.W. Hillhouse, M. Law, Nano Lett. 10, 1960 (2010).

  40. M.V. Kovalenko, M. Scheele, D.V. Talapin, Science 324, 1417 (2009).

  41. M.V. Kovalenko, M.I. Bodnarchuk, J. Zaumseil, J.-S. Lee, D.V. Talapin, J. Am. Chem. Soc. 132, 10085 (2010).

  42. J.-S. Lee, M.V. Kovalenko, J. Huang, D.S. Chung, D.V. Talapin, Nat Nanotechnol. 6, 348 (2011).

  43. A. Nag, M.V. Kovalenko, J.-S. Lee, W. Liu, B. Spokoyny, D.V. Talapin, J. Am. Chem. Soc. 133, 10612 (2011).

  44. A.T. Fafarman, W.-K. Koh, B.T. Diroll, D.K. Kim, D.-K. Ko, S.J. Oh, X Ye, V Doan-Nguyen, M.R. Crump, D.C. Reifsnyder, C.B. Murray, C.R. Kagan, J. Am. Chem. Soc. (2011).

  45. M.V. Kovalenko, M.I. Bodnarchuk, D.V. Talapin, J. Am. Chem. Soc. 132, 15124 (2010).

  46. D.B.Mitzi, L.L. Kosbar, C.E. Murray, M.Copel, A. Afzali, Nature 428, 299 (2004).

  47. D.B. Mitzi, M. Copel, S.J. Chey, Adv. Mater. 17, 1285 (2005).

    Article  CAS  Google Scholar 

  48. M.V. Kovalenko, B. Spokoyny, J.-S. Lee, M. Scheele, A. Weber, S. Perera D. Landry, D.V. Talapin, J. Am. Chem. Soc. 132, 6686 (2010).

  49. J.J. Urban, D.V. Talapin, E.V. Shevchenko, C.R. Kagan, C.B. Murray, Nat. Mater. 6, 115 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I want to express my greatest respect to my wonderful group of postdocs, students, and collaborators—I am very proud to be a part of this team. I would also like to use this opportunity and thank those who introduced me to different facets of nanomaterials, especially Horst Weller, Chris Murray, and Paul Alivisatos. Many thanks to the funding agencies for supporting this work, in particular, NSF CAREER under Award Number DMR-0847535, the Office of Naval Research under Award Number N00014–10–1-0190, and the David and Lucile Packard Foundation. Finally, I am very thankful to MRS for selecting me for the Outstanding Young Investigator Award, especially when I think of those who have received it in the past.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri V. Talapin.

Additional information

This article is based on the Outstanding Young Investigator Award lecture, presented by Dmitri V. Talapin on April 26, 2011, at the 2011 Materials Research Society Spring Meeting in San Francisco. The Outstanding Young Investigator Award has been established to recognize outstanding interdisciplinary materials research by a young scientist or engineer. Talapin is recognized “for methodological developments of synthesis and self-assembly of inorganic nanocrystals and for fundamental studies transforming colloidal nanostructures into electronic and optoelectronic materials.”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talapin, D.V. Nanocrystal solids: A modular approach to materials design. MRS Bulletin 37, 63–71 (2012). https://doi.org/10.1557/mrs.2011.337

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2011.337

Navigation