2021 (2) 7

https://doi.org/10.15407/polymerj.43.02.133

SILICON-CONTAINING OLIGOMERIC AZOINITIATORS IN THE SYNTHESIS OF BLOCK COPOLYMERS

О.V. Zinchenko,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
ОRCID: 0000-0002-7455-7448
V.D. Ezhova,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
ORCID: 0000-0001-6847-0293
A.L. Tolstov,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
ORCID: 0000-0001-6016-9308
e-mail: a.tolstov@ukr.net
Polym. J., 2021, 43, no. 2: 133-142.

 

Section: Polymer synthesis.

 

Language: Ukrainian.

 

Abstract:

A solvothermal synthetic pathway and functional polymer styabilizers was used for synthesis of fine silver structures of different architecture. Using polyvinylpyrrolidone as a stabilizer silver micronized wires with a diameter of 3,8–4,2 μm and aspect ratio of up to 30 were prepared. XRD technique was applied for qualitative determination of silver metal structures. New thermoresponse composite hydrogels with a structure of semi-IPNs were prepared from cross-linked polyvinyl alcohol, linear highly hydrophilic poly(2-ethyl-2-oxazoline) (PEtOx) and as-synthesized silver micro-sized wires. Effect of a structure and a composition of the polymer matrix, and inorganic anisotropic filler on structure arrangement of composite hydrogels were evaluated by DMA studies. A presence of linear hydrophilic PEtOx and anisotropic metal filler in PVA matrix reduces storage modulus Е’ from 275 to 222–230 MPa and increases loss modulus Е” up to 45,5 MPa at room temperature measurements that partially initiated by poor structuration ability of the composites under high solvation level of polymer matrices. Increasing temperature leads to redistribution of hydrogen bonds network and hybridization of PVA nad PEtOx macrochains and enhances energy dissipation ability of unfilled hydrogel. A filler due to conjugation with amine-functionalized PEtOx chains and its localization closed to a surface of metal supresses polymer-polymer interactions and elasticity parameters of composite matrix drops down. As a result, diffusion and permeability coefficients of composite hydrogels reaches 1,06–1,52·10–9 cm2/s and 0,83–1,09·10-9 g/(cm·s), respectively, that higher in comparison with cross-linked PVA matrices. A presence of hydrogen bonds of different energy in hydrogels provides an appearance of multiple relaxation transitions due to different macrochain mobility in a bulk of polymer matrix. Differences of temperature interval of LCTS for hydrogels were found from analysis Е”(T)/dT (62–70 °С) and Δχ(T)/dT (67–70 °С) dependencies are interrelated with kinetic pecularities of diffusion processes that are able to suppress a phase separation at the temperatures closed to LCTS. Phase inversion processes for hydrogel containing 5 % of PEtOx at LCTS are accompanied by desorption of 32–73 % of sorbate. Moreover, thermoresponsive properties of the hydrogels filled with metallic silver wires are higher than that of the unfilled semi-IPNs.

Key words: polyvinyl alcohol, poly(2-ethyl-2-oxazoline), hydrogels, thermoresponsive, anisotropic filler, properties.

 

 

REFERENCES
1. Kim Y.-J., Matsunaga Y.T. Thermo-responsive polymers and their application as smart biomaterials. J. Mater. Chem. B, 2017, 5: 4307–4321. DOI: 10.1039/C7TB00157F.
2. Wei M., Gao Y., Li X., Serpe M.J. Stimuli-responsive polymers and their applications. Polym. Chem, 2017, 8: 127–143. DOI: 10.1039/C6PY01585A.
3. Sponchioni M., Palmiero U.C., Moscatelli D. Thermo-responsive polymers: Applications of smart materials in drug delivery and tissue engineering. Mater. Sci. Eng. C. Mater. Biol. Appl, 2019, 102: 589–605. DOI: 10.1016/j.msec.2019.04.069.
4. Lang X., Patrick A.D., Hammouda B., Hore M.J.A. Chain terminal group leads to distinct thermoresponsive behaviors of linear PNIPAM and polymer analogs. Polymer, 2018, 145: 137–147. DOI: 10.1016/j.polymer.2018.04.068.
5. Cortez-Lemus N.A., Licea-Claverie A. Poly(N-vinylcaprolactam), a comprehensive review on a thermoresponsive polymer becoming popular. Prog. Polym. Sci., 2016, 53: 1–51. DOI: 10.1016/j.progpolymsci.2015.08.001.
6. Monnery B.D., Hoogenboom R. Thermoresponsive hydrogels formed by poly(2-oxazoline) triblock copolymers. Polym. Chem., 2019, 10: 3480–3487. DOI: 10.1039/C9PY00300B.
7. Gandhi A., Paul A., Sen S.O., Sen K.K. Studies on thermoresponsive polymers: Phase behaviour, drug delivery and biomedical applications. Asian J. Pharmaceutical Sci., 2015, 10: 99–107. DOI: 10.1016/j.ajps.2014.08.010.
8. Zhang P., Wyman I., Hu J., Lin S., Zhong Z., Tu Y., Huang Z., Wei Y. Silver nanowires: Synthesis technologies, growth mechanism and multifunctional applications. Mater. Sci. Eng. B., 2017, 223: 1–23. DOI: 10.1016/j.mseb.2017.05.002.
9. Xue Q., Yao W., Liu J., Tian Q., Liu L., Li M., Lu Q., Peng R., Wu W. Facile synthesis of silver nanowires with different aspect ratios and used as high-performance flexible transparent electrodes. Nanoscale Res. Lett., 2017, 12: 480. DOI: 10.1186/s11671-017-2259-6.
10. Cavalli A., Dijkstra A., Haverkort J.E.M., Bakkers E.P.A.M. Nanowire polymer transfer for enhanced solar cell performance and lower cost. Nanostructures Nanoobjects, 2018, 16: 59–62. DOI: 10.1016/j.nanoso.2018.03.014.
11. Lian L., Xi X., Dong D., He G. Highly conductive silver nanowire transparent electrode by selective welding for organic light emitting diode. Org. Electron., 2018, 60: 9–15. DOI: 10.1016/j.orgel.2018.05.028.
12. Alshammari A.S. Improved electrical stability of silver NWs based hybrid transparent electrode interconnected with polymer functionalized CNTs. Mater. Res. Bull., 2019, 111: 245–250. DOI: 10.1016/j.materresbull.2018.11.017.
13. Yuksel R., Alpugan E., Unalan H.E. Coaxial silver nanowire/polypyrrole nanocomposite supercapacitors. Org. Electron., 2018, 52: 272–280. DOI: 10.1016/j.orgel.2017.10.012.
14. Turan J., Kesik M., Soylemez S., Goker S., Coskun S., Unalan E.H., Toppare L. An effective surface design based on a conjugated polymer and silver nanowires for the detection of paraoxon in tap water and milk. Sensors Actuators B. Chem., 2016, 228: 278–286. DOI: 10.1016/j.snb.2016.01.034.
15. Xin J., Wang X.-Y., Mi H.-Y., Turng L.-S. Stretchable gelatin/silver nanowires composite hydrogels for detecting human motion. Mater. Lett., 2018, 237: 53–56. DOI: 10.1016/j.matlet.2018.11.078.
16. Ge L.P., Li Q., Wang M., Ouyang J., Li X., Xing M.M.Q. Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int. J. Nanomed., 2014, 9: 2399–2407. DOI: 10.2147/IJN.S55015.
17. Kilin D.S., Prezhdo O.V., Xia Y. Shape-controlled synthesis of silver nanoparticles: Ab initio study of preferential surface coordination with citric acid. Chem. Phys. Lett., 2008, 458: 113–116. DOI: 10.1016/j.cplett.2008.04.046.
18. Xia Y., Xiong Y., Lim B., Skrabalak S.E. Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angew. Chem. Int. Ed., 2009, 48: 60–103. DOI: 10.1002/anie.200802248.
19. Xie Z.X., Charlier J., Cousty J. Molecular structure of self-assembled pyrrolidone monolayers on the Au (111) surface: formation of hydrogen bond-stabilized hexamers. Surface Science, 2000, 448: 201–211. DOI: 10.1016/S0039-6028(99)01193-0.
20. Voronov A., Kohut A., Peukert W. Synthesis of Amphiphilic Silver Nanoparticles in Nanoreactors from Invertible Polyester. Langmuir, 2007, 23: 360–363. DOI: 10.1021/la062737t.
21. Kyrychenko Alexander, Pasko D.A., Kalugin O.N. Poly(vinyl alcohol) as a water protecting agent for silver nanoparticles: the role of polymer size and structure. Phys. Chem. Chem. Phys., 2017, 19: 8742–8756. DOI: 10.1039/C6CP05562A.
22. Hendessi S., Güner P.T., Miko A., Demirel A.L. Hydrogen bonded multilayers of poly(2-ethyl-2-oxazoline) stabilized silver nanoparticles and tannic acid. Eur. Polym. J., 2017, 88: 666–678. DOI: 10.1016/j.eurpolymj.2016.10.039.
23. Hoogenboom R., Schlaad H. Thermoresponsive poly(2-oxazoline)s, polypeptoids, and polypeptides. Polym. Chem., 2017, 8: 24–40. DOI: 10.1039/C6PY01320A.
24. Sahn M., Stafast L.M., Diraufm M., Bandelli D., Weber C., Schubert U.S. LCST behavior of poly(2-ethyl-2-oxazoline) containing diblock and triblock copolymers. Eur. Polym. J., 2018, 100: 57–66. DOI: 10.1016/j.eurpolymj.2018.01.014.