Skip to main content

Advertisement

Log in

Alterations of common chromosome fragile sites in hematopoietic malignancies

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Conditions of replication stress affect expression of all common fragile regions, including FRA3B (chromosome 3p14.2), FRA16D (16q23), FRA6E (6q26), FRA7G (7q31.2), and FRAXB (Xp22.3), and a number of cancer cell lines exhibit homozygous deletions in 2 or more common fragile regions. In 1996 the fragile histidine triad (FHIT) gene was isolated from the region encompassing the most active fragile FRA3B locus, and recently the WW domain-containing oxidoreductase gene (WWOX) was identified at FRA16D.These 2 fragile genes are altered or deleted in various epithelial tumors and exhibit tumor suppressor function. Aberration or absence of WWOX expression recently was detected in primary hematopoietic malignancies. The aberration resulted not only from genomic deletions but also possibly from epigenetic modifications associated with expression of fragility. Thus chromosomal aberrations at common fragile sites, in addition to the well-defined hallmark leukemia chromosome translocations, are involved in clinicopathological outcomes of hematopoietic malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Struski S, Doco-Fenzy M, Cornillet-Lefebvre P. Compilation of published comparative genomic hybridization studies. Cancer Genet Cytogenet. 2002;135:63–90.

    Article  CAS  PubMed  Google Scholar 

  2. Heerema NA. Chromosomes in lymphomas and solid tumors. Cancer Invest. 1998;16:183–187.

    Article  CAS  PubMed  Google Scholar 

  3. Druker BJ, O’Brien SG, Cortes J, Radich J. Chronic myelogenous leukemia. Hematology. 2002:111-135.

    Article  Google Scholar 

  4. Clarkson B, Strife A, Wisniewski D, Lambek CL, Liu C. Chronic myelogenous leukemia as a paradigm of early cancer and possible curative strategies. Leukemia. 2003;17:1211–1262.

    Article  CAS  PubMed  Google Scholar 

  5. Croce CM. Role of TCL1 and ALL1 in human leukemias and development. Cancer Res. 1999;59(suppl 7):1778s-1783s.

    PubMed  CAS  Google Scholar 

  6. Schichman SA, Canaani E, Croce CM. Self-fusion of the ALL1 gene: a new genetic mechanism for acute leukemia. JAMA. 1995;273:571–576.

    Article  CAS  PubMed  Google Scholar 

  7. Salomoni P, Pandolfi PP. The role of PML in tumor suppression. Cell. 2002;108:165–170.

    Article  CAS  PubMed  Google Scholar 

  8. Soussi T. The p53 tumour suppressor gene: a model for molecular epidemiology of human cancer. Mol Med Today. 1996;2:32–37.

    Article  CAS  PubMed  Google Scholar 

  9. Ruiz J, Mazzolini G, Sangro B, Qian C, Prieto J. Gene therapy of hepatocellular carcinoma. Dig Dis. 2001;19:324–332.

    Article  CAS  PubMed  Google Scholar 

  10. Baylin S, Bestor TH. Altered methylation patterns in cancer cell genomes: cause or consequence? Cancer Cell. 2002;1:299–305.

    Article  CAS  PubMed  Google Scholar 

  11. Tamura G. Genetic and epigenetic alterations of tumor suppressor and tumor-related genes in gastric cancer. Histol Histopathol. 2002;17:323–329.

    PubMed  CAS  Google Scholar 

  12. Krug U, Ganser A, Koeffler HP. Tumor suppressor genes in normal and malignant hematopoiesis. Oncogene. 2002;21:3475–3495.

    Article  CAS  PubMed  Google Scholar 

  13. Liu Y, Ganesan TS. Tumour suppressor genes in sporadic epithelial ovarian cancer. Reproduction. 2002;123:341–353.

    Article  CAS  PubMed  Google Scholar 

  14. Cohen AJ, Li FP, Berg S, et al. Hereditary renal-cell carcinoma associated with a chromosomal translocation. N Engl J Med. 1979;301:592–595.

    Article  CAS  PubMed  Google Scholar 

  15. Huebner K, Croce CM. FRA3B and other common fragile sites: the weakest link. Nat Rev Cancer. 2001;1:214–221.

    Article  CAS  PubMed  Google Scholar 

  16. Siprashvili Z, Sozzi G, Barnes LD, et al. Replacement of Fhit in cancer cells suppresses tumorigenicity. Proc Natl Acad Sci U S A. 1997;94:13771–13776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ji L, Fang B, Yen N, Fong K, Minna JD, Roth JA. Induction of apoptosis and inhibition of tumorigenicity and tumor growth by adenovirus vector-mediated fragile histidine triad (FHIT) gene overexpression. Cancer Res. 1999;59:3333–3339.

    PubMed  CAS  Google Scholar 

  18. Sard L, Accornero P, Tornielli S, et al. The tumor-suppressor gene FHIT is involved in the regulation of apoptosis and in cell cycle control. Proc Natl Acad Sci U S A. 1999;96:8489–8492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ishii H, Dumon KR, Vecchione A, et al. Potential cancer therapy with the fragile histidine triad gene: review of the preclinical studies. JAMA. 2001;286:2441–2449.

    Article  CAS  PubMed  Google Scholar 

  20. Bednarek AK, Keck-Waggoner CL, Daniel RL, et al. WWOX, the FRA16D gene, behaves as a suppressor of tumor growth. Cancer Res. 2001;61:8068–8073.

    PubMed  CAS  Google Scholar 

  21. Kuroki T, Trapasso F, Shiraishi T, et al. Genetic alterations of the tumor suppressor gene WWOX in esophageal squamous cell carcinoma. Cancer Res. 2002;62:2258–2260.

    PubMed  CAS  Google Scholar 

  22. Glover TW, Berger C, Coyle J, Echo B. DNA polymerase alpha inhibition by aphidicolin induces gaps and breaks at common fragile sites in human chromosomes. Hum Genet. 1984;67:136–142.

    Article  CAS  PubMed  Google Scholar 

  23. Yunis JJ, Soreng AL. Constitutive fragile sites and cancer. Science. 1984;226:1199–1204.

    Article  CAS  PubMed  Google Scholar 

  24. Arlt MF, Miller DE, Beer DG, Glover TW. Molecular characterization of FRAXB and comparative common fragile site instability in cancer cells. Gene Chromosomes Cancer. 2002;33:82–92.

    Article  CAS  Google Scholar 

  25. Ohta M, Inoue H, Cotticelli MG, et al. The FHIT gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell. 1996;84:587–597.

    Article  CAS  PubMed  Google Scholar 

  26. Sozzi G, Huebner K, Croce CM. FHIT in human cancer. Adv Cancer Res. 1998;74:141–166.

    Article  CAS  PubMed  Google Scholar 

  27. Zochbauer-Muller S, Fong KM, Maitra A, et al. 5 CpG island methylation of the FHIT gene is correlated with loss of gene expression in lung and breast cancer. Cancer Res. 2001;61:3581–3585.

    PubMed  CAS  Google Scholar 

  28. Tanaka H, Shimada Y, Harada H, et al. Methylation of the 5 CpG island of the FHIT gene is closely associated with transcriptional inactivation in esophageal squamous cell carcinomas. Cancer Res. 1998;58:3429–3434.

    PubMed  CAS  Google Scholar 

  29. Trapasso F, Krakowiak A, Cesari R, et al. Designed FHIT alleles establish that Fhit-induced apoptosis in cancer cells is limited by substrate binding. Proc Natl Acad Sci U S A. 2003;100:1592–1597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bednarek AK, Laflin KJ, Daniel RL, Liao Q, Hawkins KA, Aldaz CM. WWOX, a novel WW domain-containing protein mapping to human chromosome 16q23.3-24.1, a region frequently affected in breast cancer. Cancer Res. 2000;60:2140–2145.

    PubMed  CAS  Google Scholar 

  31. Paige AJ, Taylor KJ, Taylor C, et al. WWOX: a candidate tumor suppressor gene involved in multiple tumor types. Proc Natl Acad Sci U S A. 2001;98:11417–11422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Richards RI. Fragile and unstable chromosomes in cancer: causes and consequences. Trends Genet. 2001;17:339–345.

    Article  CAS  PubMed  Google Scholar 

  33. Ludes-Meyers JH, Bednarek AK, Popescu NC, Bedford M, Aldaz CM. WWOX, the common chromosomal fragile site, FRA16D, cancer gene. Cytogenet Genome Res. 2003;100:101–110.

    Article  CAS  PubMed  Google Scholar 

  34. Yendamuri S, Kuroki T, Trapasso F, et al. WW domain containing oxidoreductase gene expression is altered in non-small cell lung cancer. Cancer Res. 2003;63:878–881.

    PubMed  CAS  Google Scholar 

  35. Chang NS, Doherty J, Ensign A. JNK1 physically interacts with WW domain-containing oxidoreductase (WOX1) and inhibits WOX1-mediated apoptosis. J Biol Chem. 2003;278:9195–9202.

    Article  CAS  PubMed  Google Scholar 

  36. Lin PM, Liu TC, Chang JG, Chen TP, Lin SF. Aberrant FHIT transcripts in acute myeloid leukaemia. Br J Haematol. 1997;99:612–617.

    Article  CAS  PubMed  Google Scholar 

  37. Iwai T, Yokota S, Nakao M, et al. Frequent aberration of FHIT gene expression in acute leukemias. Cancer Res. 1998;58:5182–5187.

    PubMed  CAS  Google Scholar 

  38. Wang L, Dong LJ, Tian F, Liu GX, Li CH. Aberrant expression and deletion of FHIT gene in leukemias. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2003;11:153–160.

    PubMed  Google Scholar 

  39. Albitar M, Manshouri T, Gidel C, et al. Clinical significance of fragile histidine triad gene expression in adult acute lymphoblastic leukemia. Leuk Res. 2001;25:859–864.

    Article  CAS  PubMed  Google Scholar 

  40. Hallas C, Albitar M, Letofsky J, Keating MJ, Huebner K, Croce CM. Loss of FHIT expression in acute lymphoblastic leukemia. Clin Cancer Res. 1999;5:2409–2414.

    PubMed  CAS  Google Scholar 

  41. Kantarjian HM, Talpaz M, O’Brien S, et al. Significance of FHIT expression in chronic myelogenous leukemia. Clin Cancer Res. 1999;5:4059–4064.

    PubMed  CAS  Google Scholar 

  42. Ishii H, Vecchione A, Furukawa Y, et al. Expression of FRA16D/WWOX and FRA3B/FHIT genes in hematopoietic malignancies. Mol Cancer Res. 2003;1:940–947.

    PubMed  CAS  Google Scholar 

  43. Carapeti M, Aguiar RC, Sill H, Goldman JM, Cross NC. Aberrant transcripts of the FHIT gene are expressed in normal and leukaemic haemopoietic cells. Br J Cancer. 1998;78:601–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Peters UR, Hasse U, Oppliger E, et al. Aberrant FHIT mRNA transcripts are present in malignant and normal haematopoiesis, but absence of FHIT protein is restricted to leukaemia. Oncogene. 1999;18:79–85.

    Article  CAS  PubMed  Google Scholar 

  45. Chang KW, Kao SY, Tzeng RJ, et al. Multiple molecular alterations of FHIT in betel-associated oral carcinoma. J Pathol. 2002;196:300–306.

    Article  CAS  PubMed  Google Scholar 

  46. Maruyama R, Toyooka S, Toyooka KO, et al. Aberrant promoter methylation profile of prostate cancers and its relationship to clinicopathological features. Clin Cancer Res. 2002;8:514–519.

    PubMed  CAS  Google Scholar 

  47. Maruyama R, Toyooka S, Toyooka KO, et al. Aberrant promoter methylation profile of bladder cancer and its relationship to clinicopathological features. Cancer Res. 2001;61:8659–8663.

    PubMed  CAS  Google Scholar 

  48. Inoue H, Ishii H, Alder H, et al. Sequence of the FRA3B common fragile region: implications for the mechanism of FHIT deletion. Proc Natl Acad Sci U S A. 1997;94:14584–14589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mimori K, Druck T, Inoue H, et al. Cancer-specific chromosome alterations in the constitutive fragile region FRA3B. Proc Natl Acad Sci U S A. 1999;96:7456–7461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Corbin S, Neilly ME, Espinosa R 3rd, Davis EM, McKeithan TW, Le Beau MM. Identification of unstable sequences within the common fragile site at 3p14.2: implications for the mechanism of deletions within fragile histidine triad gene/common fragile site at 3p14.2 in tumors. Cancer Res. 2002;62:3477–3484.

    PubMed  CAS  Google Scholar 

  51. Noguchi T, Takeno S, Kimura Y, et al. FHIT expression and hypermethylation in esophageal squamous cell carcinoma. Int J Mol Med. 2003;11:441–447.

    PubMed  CAS  Google Scholar 

  52. Kuroki T, Trapasso F, Yendamuri S, et al. Allele loss and promoter hypermethylation of VHL, RAR-beta, RASSF1A, and FHIT tumor suppressor genes on chromosome 3p in esophageal squamous cell carcinoma. Cancer Res. 2003;63:3724–3728.

    PubMed  CAS  Google Scholar 

  53. Yang Q, Nakamura M, Nakamura Y, et al. Two-hit inactivation of FHIT by loss of heterozygosity and hypermethylation in breast cancer. Clin Cancer Res. 2002;8:2890–2893.

    PubMed  CAS  Google Scholar 

  54. Wu Q, Shi H, Suo Z, Nesland JM. 5-CpG island methylation of the FHIT gene is associated with reduced protein expression and higher clinical stage in cervical carcinomas. Ultrastruct Pathol. 2003;27:417–422.

    PubMed  Google Scholar 

  55. Casper AM, Nghiem P, Arlt MF, Glover TW. ATR regulates fragile site stability. Cell. 2002;111:779–789.

    Article  CAS  PubMed  Google Scholar 

  56. Arlt MF, Casper AM, Glover TW. Common fragile sites. Cytogenet Genome Res. 2003;100:92–100.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Ishii, H., Furukawa, Y. Alterations of common chromosome fragile sites in hematopoietic malignancies. Int J Hematol 79, 238–242 (2004). https://doi.org/10.1532/IJH97.03145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1532/IJH97.03145

Key words

Navigation